Az Eckhart 3D nyomtatással optimalizálja gyártósori megoldásait

Az Eckhart is 3D nyomtatással optimalizálja gyártósori megoldásait

Az Eckhart ipari automatizálással foglalkozó amerikai vállalat vezető szerepet tölt be additív gyártás felhasználásában az Ipar 4.0 területén. A cég a fejlett ipari megoldások vezetője, elkötelezett amellett, hogy javítsa a gyárban dolgozók munkakörülményeit, biztonságot, megbízhatóságot és hatékonyságot biztosít az ipar számára, az orvosi eszközöktől az autóiparig. „Az Ipar 4.0 valóban egy intelligens ökoszisztéma, amely összefogja a gyár valamennyi rendszerét, hogy segítsen a folyamatot irányítóknak, és a gyárban dolgozó alkalmazottaknak a jobb tájékozódásban” – mondta Andrew Storm, az Eckhart vezérigazgatója. „A Fortune 500 lista gyárigazgatóinak kilencven százaléka úgy véli, hogy az Ipar 4.0 technológiák bevezetése elengedhetetlen” – tette hozzá Dan Burseth, az Eckhart alelnöke. (A Fortune 500 az USA legnagyobb árbevételű cégeinek listája)

3D nyomtatott egyedi szenzortartó konzol
3D nyomtatott egyedi szenzortartó konzol

Személyre szabott, bevált additív megoldások

Az Eckhart testreszabja gyártósori megoldásait az egyes ügyfelek egyedi igényeinek kielégítése érdekében. Megmutatja, hogy pontosan hol fejlődhetnek az ergonómia, a helyszín vagy az anyagköltség tekintetében, önvezető járművek, kollaboratív robotika használatával és 3D nyomtatással. „Ügyfeleink bevált, tartós megoldásokat akarnak. Az összeszerelő üzemben kíméletlenek a körülmények: az eszközöket óránként 60-szor használják, napi háromszor 8 órás műszakban, heti 6-7 napon át” – mondta Bob Heath, az Eckhart Additive Manufacturing tervezőmérnöke. A Stratasys mérnöki minőségű alapanyagai, a Nylon 12 szénszálas és az ULTEM™ 1010 resin segítségével olyan tartós megoldásokat tudunk előállítani, amelyek ellenállóak, és kibírják a kíméletlen automatizált ipari környezetet. Az olyan nagy ipari ügyfeleknek, mint a Ford, a Mercedes, vagy az Airbus, az Eckhart megmutatta, hogy a Stratasys alapanyagaiból készült gyártósori eszközök alkalmazása jelentősen javítja a gyártási folyamatot.

„Korábban az alkatrészeinket annak megfelelően kellett megterveznünk, hogy milyen eljárással fogjuk legyártani például manuális megmunkálással vagy CNC-marással. Az additív gyártással azonban korlátlanok a lehetőségek, bármilyen komplikált alkatrész előállítható.”

Sok Eckhart ügyfél ébredt rá, mekkora előnyt jelentenek a gyártási folyamatok során alkalmazott 3D nyomtatott szerelő ülékek, illesztősablonok, és szerszámok.

3D nyomtatott rögzítő befogó
3D nyomtatott rögzítő befogó

A logók, emblémák, címkék felhelyezése a járművekre egy gyakran ismétlődő művelet.  Az ehhez használatos pozicionáló eszköz kerete igen nehéz, és akár óránként 60-szor is fel kell emelnie a gyárban dolgozó operátoroknak. Ez a folyamatos, ismétlődő mozdulatsor könnyen sérüléshez vezethet.  A 3D nyomtatás alkalmazásával hatékonyan megoldható a tömegcsökkentés, így a könnyített eszközök használatával a sérülések kialakulási esélye csökkenthető.

„Az additív gyártás egy olyan eszköz a kezünkben, amellyel nem helyettesítjük a munkavállalót, de a hatékonyságát az ötszörösére növelhetjük” -mondta Drew Morales, az Eckhart üzletfejlesztési igazgatója.

Társulás egy korszerű jövőért

Az Eckhart felismerte, hogy az idő és az innováció kulcsfontosságú tényezők, és minden vállalkozásra súlyos nyomás nehezedik, hogy gyorsabb legyen. Ez mindenkire vonatkozik, kezdve a tehergépjármű gyártó Caterpillar-tól az orvostechnikai eszközöket gyártó Medtronic-on át a repülőgépgyártókig, mint az Airbus, Boeing vagy a Lockheed Martin.

„Nagyon erőteljesen érezzük, hogy a 3D nyomtatás egy olyan katalizátor, amely lehetővé teszi a vállalkozások számára, hogy sokkal gyorsabban teszteljék az ötleteiket, elképzeléseiket, mint korábban” – mondta Storm.

Az Eckhart esettanulmányán keresztül jól érzékélhető a 3D nyomtatás előnye és kiemelt szerepe az Ipar 4.0 bevezetésében.

Töltse le tervezési útmutatónkat, amelyből megismerheti az FDM technológiai eljárásra vonatkozó tervezési szempontokat!
Tervezési szempontok FDM nyomtatáshoz

Egyedi tömeggyártás 3D nyomtatással

Egyedi tömeggyártás 3D nyomtatással

Mára pontosan kirajzolódott a 3D nyomtatás helye a gyártástechnológiák sorában: olcsóbbá, gyorsabbá és testre szabhatóvá tette a tömeggyártást, akár kisszériás megrendelések esetén is. Az innovatív technológia gyakorlati szerepéről kérdeztük Falk Györgyöt, a Varinex Zrt. stratégiai igazgatóját.

Falk György

Falk György

A kezdeti időben a 3D nyomtatás csupán a számítógépen megtervezett tárgyak vizualizálására szolgált, de ahogy fejlődött a technológia – nőtt a sebessége, javult a felbontása, és új, az iparban használható alapanyagok jelentek meg –, egyre több helyen bukkantak fel a 3D nyomtatott tárgyak. Mára pedig kivívta a helyét a gyártási technológiák sorában – vallja Falk György.

– Az Airbus például az A350-es repülőgépében több mint ezer nyomtatott alkatrészt használ, de a legnagyobb autógyártók sem léteznének a 3D nyomtatás nélkül. A fröccsöntésnél gyorsabban és olcsóbban tudnak előállítani alkatrészeket, és a technológia segítségével a tömeggyártásban is meg tud jelenni az egyedi igény.

Mi kellett ahhoz, hogy a nagy gyártók felfedezzék a 3D nyomtatást, és megbízzanak a nyomtatott alkatrészekben?

– Az évek során egyre összetettebb feladatokra képes 3D nyomtatókat dobtak piacra. A legújabbak már képesek több színt és különböző anyagokat párosítani, vagy extrém vékony felületet nyomtatni. A fejlődés igazi motorja azonban az alapanyag-technológia.

A repülőgépekben használt alkatrészek esetén például követelmény volt, hogy azok kibírják a magas hőmérsékletet, tűz esetén pedig olyan, nem mérgező gázt fejlesszenek, amely elvonja a légkörből az oxigént, és eloltja a tüzet. Ha pedig egy termék megfelelt a legmagasabb elvárásokkal rendelkező repülőgépiparnak, más iparágak szereplői is nyitottabbak lesznek az innovációra.

Mi a 3D nyomtatás versenyelőnye?

– A 3D nyomtatás az egyedi, nem túl nagy sorozatszámú alkatrészek gyártását is lehetővé teszi rövid határidővel és költséghatékonyan. A komplex alkatrészek esetében is célszerű az innovatív nyomtatást alkalmazni, amivel meg lehet spórolni a fröccsöntéshez szükséges bonyolult szerszám előállításának tetemes költségét.

A 3D nyomtatás a megoldás akkor is, amikor egy új alkatrész prototípusát kell előállítani a tömeggyártást megelőzően és abban az esetben is, amikor a személyre szabhatóság a felhasználói élmény záloga, mint például a szemüvegkeret, a fogimplantátum vagy a csípőprotézis esetén. Gondoljunk csak bele, eddig az ember csípőcsontját kellett a protézishez igazítani, a 3D nyomtatással előállított darabot viszont a betegről készült CT-felvételek alapján tervezik meg milliméterről milliméterre.

A Gartner jóslata szerint 2021-re a világ TOP100 fogyasztásicikk-gyártójának a húsz százaléka 3D nyomtatással fogja előállítani a termékeit. Ön hogy látja a 3D nyomtatás jövőjét?

A 3D nyomtatáshoz kapcsolódó kezdeti túlzó várakozások a helyükre kerültek, ma megalapozottan látjuk, hogy valójában mire jó ez a technológia. Ahol a személyre szabhatóság fogyasztói elvárás, a 3D nyomtatás a legmegfelelőbb gyártási technológia.

Ahol az számít, hogy mennyi idő alatt érkezik meg a pótalkatrész, a 3D nyomtatással lehet elkerülni a hatalmas raktározási, beszállítási és logisztikai költségeket. És akkor még nem beszéltünk az egészségiparról, ahol az orvosi minőségű titánnyomtatás forradalmasíthatja az implantátumgyártást. A nagy kérdés a gyártási sebesség fejlődésének dinamizmusa.

A cég

1991-ben, amikor megszűnt a Gépipari Technológiai Intézet, Voloncs György és Falk György megalapították a Varinexet. A kutatóintézetben addig tudományos főmunkatársként számítógépes tervezéssel foglalkozó mérnökökből a kényszer szült vállalkozót, de ezt ők az elmúlt évtizedekben soha nem bánták meg. A ma már évi két és félmilliárd forintos árbevétellel rendelkező, közel 40 főt foglalkoztató Varinex Zrt. a hazai 3D nyomtatás legnagyobb guruja.

Forrás: Piac és Profit, 2019. március


Ha szeretne értesülni friss híreinkről, eseményeinkről, rendezvényeinkről, iratkozzon fel hírlevelünkre!

Megjelent a Stratasys TPU 92A Elasztomer alapanyag

Megjelent a Stratasys TPU 92A Elasztomer alapanyag

A Stratasys F123 3D nyomtató sorozata a nagy teljesítményű FDM technológia és a GrabCAD Print szoftver nyomtatást támogató funkcióinak segítségével a lehető legsokoldalúbb és legintelligensebb megoldást nyújtja. Most megérkezett hozzá a legújabb alapanyag, a rugalmas  TPU 92A elasztomer.

TPU 92A elasztomer alapanyagból 3D nyomtatott alkatrész
TPU 92A elasztomer alapanyagból nyomtatott alkatrész. A kép forrása: www.stratasys.com

A TPU-t (Thermoplastic Polyurethane Elastomer) az olyan kiváló tulajdonságai, mint a nyújthatóság, a kiváló szilárdság és az extrém tartósság, alkalmassá teszik komplex, üreges, rugalmas prototípusok és kis sorozatban gyártható termékek 3D nyomtatására. Az oldható támaszanyagnak köszönhetően nem kell többé tervezési kompromisszumokat kötni, és a költségek is csökkennek.

Az új, rugalmas és szakadásálló alapanyag széleskörű felhasználási lehetőséget kínál az iparban, mint pl. az autóipar vagy a sportszergyártás. Többek között készíthetők belőle különféle tömítések, tömlők, csövek, konzolbélések, fogantyúk, felületvédők.

Amennyiben szeretne elsőként értesülni a 3D nyomtatással kapcsolatos hírekről, rendezvényeinkről, akcióinkról, kérjük, kattintson az alábbi gombra.

Iratkozzon fel hírlevelünkre!

A TPU 92A elasztomer alapanyag a Stratasys FDM technológiájú berendezésekhez, mint például a Stratasys F170 és F370 3D nyomtatókhoz érhető el.

3D nyomtatás az autóiparban

3D nyomtatás az autóiparban

A Stratasys által kínált technológia lehetővé teszi az alapanyagok valós időben történő keverését.  Az Audi ezzel a 3D nyomtatási technológiával fejleszti és teszi gyorsabbá az autóipari tervezést. Az Audi a prototípus-készítés átfutási idejének jelentős csökkenésére számít a járműveinél használt hátsó lámpaburák tervezését illetően. A hagyományos módszerekhez képest akár 50%-kal is csökkenhet a fejlesztési idő. A Stratasys J750 3D nyomtató élénk színeinek köszönhetően az Audi olyan átlátszó, többszínű alkatrészeket gyárthat – a digitális CAD modell színezett, textúrázott változatából közvetlenül – 3D nyomtatással, amelyek megfelelnek a szigorú tervezési és jóváhagyási folyamat textúrára és színekre vonatkozó követelményeinek.
Az Audi 3D műanyagnyomtatási központja az egyedülálló Stratasys J750 3D nyomtatóval egy darabban, közvetlenül a digitális modellből nyomtatja ki az ultrarealisztikus, többszínű és átlátszó hátsó lámpaburákat.
Mielőtt az új járművek gyártását megkezdik, az Audi ingolstadti előszériás gyártási központja fizikai modelleket és prototípusokat épít a márka számára, hogy alaposan kiértékelhesse az új terveket és koncepciókat. Ehhez a jármű legtöbb alkatrészének már a gyártósor elkészülte előtt, a fejlesztés korai szakaszában rendelkezésre kell állnia – a felniktől kezdve a kilincseken át egészen a hűtőrácsokig. A hagyományos módszereket, mint például az öntést vagy a CNC marást, széles körben alkalmazzák a fizikai modellek, alkatrészek megalkotására és sokszorosítására az új tervek, koncepciók megvalósítása során. A 3D nyomtatás a hagyományos módszerek mellett az Audi előszériás gyártási központjában a tervezési munka szerves részévé vált, így a csapat túlléphetett a hagyományos folyamatok korlátain, és felgyorsíthatta a tervek ellenőrzését, jóváhagyását. A hátsó lámpaburák esetében a csapat hagyományosan öntést vagy marást használt az egyes alkatrészek gyártásához. A hagyományos eljárások esetében a hátsó lámpatestek többszínű buráinak létrehozása jelentette a legfőbb kihívást. Az egyes eltérő színekből álló részegységeket gyártás után össze kell illeszteni, ugyanis nem lehetett őket egy darabban, különböző színekben és textúrával a hagyományos módszerekkel legyártani. Ez az időigényes folyamat növelte a tervek ellenőrzésének átfutási idejét, ezáltal növelte a termék piacra kerüléséhez szükséges időt. Digitális modellből „gombnyomásra” színes, ultrarealisztikus modellek készülnek, ezáltal a 3D nyomtatás új generációja felgyorsítja a tervezést A folyamat korszerűsítése és egyszerűsítése céljából az Audi 3D műanyagnyomtatási központja a Stratasys J750, egyszerre hat különböző alapanyagból történő gyártásra, valós színes nyomtatásra is képes 3D nyomtatóját használja. Ez lehetővé teszi a teljesen átlátszó, akár többszínű hátsó lámpaburák egy darabban való nyomtatását, és szükségtelenné teszi a korábbi többlépcsős folyamatot. A több mint 500 000 színkombináció révén a csapat olyan színátmenetes és textúrázott átlátszó alkatrészeket nyomtathat 3D-ben, amelyek az Audi tervezési-jóváhagyási folyamatában lefektetett legszigorúbb feltételeknek is megfelelnek. „A dizájn az egyik legfontosabb vásárlási szempont az Audi ügyfelei számára, ezért döntő fontosságú, hogy ragaszkodjunk a legmagasabb szintű minőségi előírásokhoz a járműfejlesztés tervezési és koncepcióalkotási fázisában – magyarázza Dr. Tim Spiering, az Audi 3D műanyagnyomtatási központjának vezetője. – Tehát olyan prototípusokra van szükségünk, amelyek pontos alkatrész-geometriával rendelkeznek, nincsenek eltorzulva, rendkívül jó minőségűek, emellett a tervekhez hű szín és átlátszóság jellemzi őket. A Stratasys J750 3D nyomtató kiemelten fontos előnyt jelent számunkra, hiszen lehetővé teszi, hogy a terveknek megfelelő pontos textúrákat és színeket nyomtassuk. Ez elengedhetetlen ahhoz, hogy a tervezési koncepciókat jóváhagyják a gyártáshoz. Ami a 3D nyomtatott átlátszó alkatrészeket illeti, ezen kívül nem láttam még olyan technológiát, amely megfelel az előírásainknak.” „Mivel a Stratasys J750-et használjuk a hátsó lámpaburák prototípusainak készítéséhez, felgyorsítjuk a tervellenőrzési folyamatot – teszi hozzá Spiering. – Úgy becsüljük, hogy akár 50 százalékos időmegtakarítást is elérhetünk a 3D nyomtatási technológia alkalmazásával a hátsó lámpaburák prototípus-készítése során.” A 3D műanyagnyomtatási szakértelemért, tanácsadásért és gyártásért egyaránt Dr. Spiering és 24 fős csapata felel az Audi ingolstadti központjában. Mióta 2002-ben befektettek az első Stratasys FDM 3D nyomtatóba, a részleg tíz 3D polimernyomtatóval – többek között Stratasys FDM és PolyJet 3D nyomtatókkal – egészítette ki portfólióját. Andy Middleton, a Stratasys EMEA regionális elnöke így összegezte: „Az Audi egy kiváló példa arra, hogy az egyedülálló színes, több alapanyag valós idejű keverésére épülő 3D nyomtatási technológiánk hogyan képes egyszerűsíteni különböző tervezési folyamatokat és hatékonyan lerövidíteni a fejlesztési ciklusokat. Ha az időmegtakarítást, amelyet az Audi a hátsó lámpák esetében ért el, kiterjesztjük a jármű többi alkatrészére is, a piacra dobás idejére gyakorolt összhatás hatalmas lesz. Izgatottan várjuk, hogy az Audi hogyan használja majd az FDM és PolyJet technológiáinkat újabb és újabb alkalmazási területeken, kihasználva az általunk kínált előnyöket a fejlesztési folyamatok hatékonyságának növelésében.” Forrás: STRATASYS.com

A McLaren az élre tör a Stratasys 3D nyomtatással

A McLaren az élre tör a Stratasys 3D nyomtatással

A Surrey-központú McLaren Racing csapat, amely 12 versenyzői és 8 konstruktőri bajnokságot nyert eddig a Forma-1-ben. Mostantól a Stratasys 3D nyomtatási technológiáit alkalmazza a tervváltozatok elkészítésének felgyorsítására és a McLaren versenyautó súlyának csökkentésére.

A McLaren versenyautók 3D nyomtatott alkatrészekkel futnak

A 2017-es versenyautó teljesítményének javítására tervezett 3D nyomtatott alkatrészek közé hidraulikavezetéket tartó konzol, rugalmas rádió kábelkorbácstartó, szénszálas kompozit fékhűtő csövek és hátsó szárnyvéglap tartozik.

A versenyautó konzolja négy óra alatt készült el, szemben a hagyományos gyártási folyamatok kéthetesre becsült gyártási idejével.

McLaren Forma-1 versenyautó kormány
A kép a McLaren tulajdona.

A McLaren a hidraulikus vezeték rögzítésére szolgáló szerkezeti konzolt 3D nyomtatással, egy Stratasys Fortus 450mc 3D nyomtató segítségével, szénszál-erősítésű nylon anyagból (FDM Nylon 12CF) készítette el.

A versenyautó hidraulikavezeték-tartó konzolja. A kép a McLaren tulajdona.
Hasonlóképpen, egy új, kétirányú kommunikációs és adatrendszer is bekerült a versenyautóba, de a kábel elvonta a pilóta figyelmét. Ennek megszüntetése érdekében a McLaren kihasználta azt, hogy a Stratasys J750 3D nyomtató rugalmas anyagok nyomtatására is képes, és előállított egy gumihoz hasonló anyagú tartót a kommunikációs rendszer kábelkorbácsainak kötegeléséhez. Egyetlen nap alatt megtörtént a három tervváltozat elkészítése és 3D nyomtatása.
A McLaren versenyautó rádió-kábelkorbácsa.
A versenyautó rádió-kábelkorbácsa. A kép a McLaren tulajdona.
A versenyautó hátulján lévő, a hátsó leszorítóerő növelésére szolgáló nagy méretű szárnyvéglap szénszál-erősítésű kompozitból készült, egy FDM-alapú Fortus 900mc 3D nyomtatóval előállított szerszám segítségével. A csapat három nap alatt végzett a 900 mm széles, magas hőmérsékleten (177 °C), ULTEM™  1010 resin alapanyagból készült öntőforma 3D nyomtatásával az autoklávozott kompozit szerkezetben való felhasználásra, amivel a csapat időt takaríthatott meg a kritikus fontosságú, korlátozott tesztelési időszakban. Neil Oatley, a McLaren Racing tervezésért és fejlesztésért felelős igazgatója a következőket mondta el: „Folyamatosan módosítjuk és tökéletesítjük a Forma 1-es versenyautó terveit, így az új tervváltozatok gyors tesztelésére való képesség alapvető fontosságú az autó könnyebbé tételéhez, és még inkább a nagyobb teljesítményt célzó, kézzelfogható változatok számának növelése tekintetében. McLaren Forma-1 csapat Stratasys 3D nyomtatókat alkalmaz

Oldható 3D nyomtatott szerszámok a versenyautó fékalkatrészeinek hőmérsékletszabályozásához

Ha az autóval kapcsolatos új fejlesztéseket egy versennyel hamarabb mutathatjuk be, miközben az új ötletből mindössze néhány nap alatt új alkatrész lesz, az kulcstényező a McLaren versenyképességének növeléséhez. Azzal, hogy egyre szélesebb körben alkalmazzuk a Stratasys 3D nyomtatási technológiáját a gyártási folyamatainkban – a kész alkatrészek előállításakor, a kompozitgyártáskor, vagy akár fogyóeszközök, például megmunkálóbefogók készítésekor – csökkenthetjük az átfutási időt, és közben összetettebb alkatrészeket gyárthatunk.” A tervezési és gyártási ciklus felgyorsítása érdekében a versenycsapat a Stratasys uPrint SE Plus készüléket a tesztek és versenyek során a helyszínen is alkalmazni fogja. Így lehetővé teszi a csapat számára, hogy igény szerint állíthasson elő alkatrészeket és szerszámokat.
3D nyomtatást használ a McLaren Forma-1 autóihoz
A kép a McLaren tulajdona.
A fékalkatrészek hőmérsékletének hatékony szabályozásához a McLaren 3D nyomtatással készült oldható szerszámokat állít elő, amelyeket üreges kompozit fékhűtő csövek gyártására használ. A kimosható mag 3D nyomtatással készült, kifejezetten ehhez az alkalmazáshoz fejlesztett oldható ST-130 anyagból. Ezt szénszál-erősítésű kompozit anyaggal vonták be, majd magas hőmérsékleten autoklávozták. A folyamat végeredménye egy csőszerű szerkezet, amelynek rendkívül sima belső felülete biztosítja a szükséges légáramlást a fékekhez, miközben maximális aerodinamikai és motorteljesítményt biztosít. Forrás: Stratasys; McLaren; theengineer.com; Autopro.hu. A képek a McLaren és a Stratasys tulajdona. Ismerje meg Ön is a McLaren által is sikeresen alkalmazott Stratasys FDM 3D nyomtatókat!

3D-nyomtatott robot-virágok menthetik meg a méheket

3D-nyomtatott robot-virágok menthetik meg a méheket

Egy ausztrál művész újszerű ötlettel állt elő a csökkenő méh populációk megmentésére. „Mesterséges Beporzó” elnevezésű koncepcionális projektje 3D-nyomtatott robot-virágokkal és mesterséges beporzással ösztönözné szaporodásra a méheket.
A 3D nyomtatott, repcére hasonlító virágszirmok vonzzák a méheket.
A méhfajok az egész világon olyan, az emberiség által előidézett kihívásokkal néznek szembe, mint az éghajlatváltozás, a rovarirtó szerek és az invazív fajok elterjedése. Szerencsére sok magánszemély és szervezet rukkol elő olyan ötletekkel, amelyek segítik a beporzásban meghatározó szerepet játszó rovarok védelmét. Michael Candy, Brisbane-i művész egyike ezeknek. A méhek beporzási tevékenységének elősegítésére egy olyan ötlettel állt elő, amelyben az additív gyártás is fontos szerepet kap. A projekt lényege, hogy pollennel és nektárral feltöltött, 3D nyomtatott robot-virágokat helyez valódi növények közé, hogy odacsábítsák és beporzásra sarkallják a méheket. A virágokat mesterséges porzószállal és repce-ihlette szirmokkal is ellátták, hogy jobban vonzzák a méheket. A nektároldatot egy sor motor és csövecske juttatja a 3D nyomtatott virág felszínére.
A nektároldatot egy sor motor és csövecske juttatja a 3D nyomtatott virág felszínére.
Candy elmondása szerint nem volt egyszerű feladat rávenni a méheket a beporzásra, sok próbálkozás és kudarc vezetett a sikerig. „Több évbe telt, mire rá tudtuk bírni a méheket, hogy rászálljanak a mesterséges porzókra” – mondta. „A szintetikus virág színe és formája is fontos a vonzerő szempontjából, mivel a méhek sokféle módon azonosítják be a virágokat.” A tesztek és a kísérletek azonban azt mutatják, hogy a méhek vonzódnak a kis sárga, 3D nyomtatott virágokhoz és pollent is gyűjtenek róluk.
A mesterséges repcét valódi fajtársai közé ültetik.
Candy úgy véli, hogy mesterséges beporzási rendszere egy napon szélesebb körben is elterjedhet, hogy ösztönözze a méheket a beporzásban: „Elképzelhető, hogy egy olyan jövőben, amikor a növények már nem lesznek képesek virágport termelni, csak gyűjteni, a „Mesterséges Beporzó” képes lenne helyreállítani a növények szaporodási ciklusát.” (Forrás: http://www.3ders.org)

3D nyomtatás az Oscar szobor előállításában is

3D nyomtatás az Oscar szobor előállításában is

Idén már 90. alkalommal rendezik meg az Oscar gálát, melyre március 4-én, a Dolby Színházban, Los Angelesben kerül sor. 2017-es év legjobb filmjeit és filmeseit díjazzák, melyek között az előző évekhez hasonlóan magyar alkotásért is szurkolhatunk. Enyedi Ildikó Testről és lélekről című filmje a legjobb idegen nyelvű alkotás kategóriában indul.

Az eredeti Oscar szobor

Az első díj tervezését Cedric Gibbonsra, az MGM (Metro-Goldwyn-Mayer) díszlettervezőjére bízták, majd az ő elképzelései, vázlatai alapján Georges Stanley szobrászművész készítette el. Így született meg Oscar 3,856 kg-mal és 34,3 cm-es magassággal, a mérete azóta sem változott, viszont a talapzatot 1945-ig többször is áttervezték.

Napjainkban az Oscar szoborból évente 50 db készül, és 12 ember munkája van benne. Az évek során több változtatáson is átesett a szobor, mivel a díjazottak első alkalommal aranyozott bronz, később fém, végül 24 karátos arannyal bevont szobrokat tarthattak a kezükben. A II. világháború idején a hatalmas fémhiány miatt 3 évig festett gipszből készültek a szobrok.

Makerbot 3D nyomtatóval készült Oscar szobor

Az Akadémia viszont néhány éve úgy döntött, hogy az eredeti, 1929-es bronz öntőforma alapján készítteti el a szobrokat. Ezzel a feladattal a művészi munkákra specializálódott New York állambéli Rock Tavernben lévő öntödét bízták meg. A műhely digitálisan beszkennelte az 1929-es szobrot és a modernkori alapzatát. A digitális Oscart ezután 3D nyomtatóval nyomtatták ki és ennek segítségével született az öntőforma, mely segítségével viaszból ki tudták önteni a szobrokat. A viaszszobrok ezután kerámia burkolatot kaptak, majd a figurákat addig hevítették, míg kifolyt belőlük a viasz és csak az üres külső köpeny maradt. Ezután az üres kerámia köpenybe öntötték a megolvasztott, folyékony bronzot. Lehűlés után tisztították és csiszolták az öntvényeket. A szobrok 24 karátos aranyborításáról egy brooklyni cég, az Epner Technology gondoskodik. A szobrocskák bronz alapja némi fekete patinát is kap, a figurákat végül kézzel csiszolják makulátlanra.  Az ötven Oscar-díj elkészítése három hónapot vesz igénybe ezzel a módszerrel. A szobrok mérete továbbra sem változott, 34 centiméter magasak és 3,8 kg súlyúak.

Reméljük, hogy az 50 szoborból, melyek részben a 3D nyomtatás technológia felhasználásával készültek, egy idén is Magyarországra kerül Enyedi Ildikó jóvoltából. Szurkoljunk együtt március negyedikéről ötödikére virradóra.
Enyedi Ildikó filmjéért is izgulhatunk a 90. Oscar-on.
(Képek forrása: nerdist.com; Varinex Zrt; kidsnews.hu)

3D nyomtatott talpú Adidas cipő

3D nyomtatott talpú Adidas cipő

Izgalmas hírek a cipő-fanatikusoknak: az Adidas a sokáig tartó hitegetés után végre piacra dobta legújabb termékét, az AlphaEDGE 4D LTD-t!

Az Adidas várva várt, 3D nyomtatott talpú cipője
Az Adidas várva várt, 3D nyomtatott talpú cipője

Az AlphaEdge 4D LTD az egyik legnépszerűbb és legjobb minőségű AlphaBounce elnevezésű futócipőn alapul. A Futurecraft nevezetű, 3D nyomtatással készített anyag a Bounce habot helyettesíti a cipő talpán. Az Adidas és a Carbon közös munkája során jött létre ez az újítás, melynek különlegessége, hogy minden lépésnél irányított energiavisszatérítés történik fény és oxigén segítségével. Természetesen a cipőt sportolóknak készítették, de dizánja lehetővé teszi utcai viseletét is.

AlphaEdge 4D LTD
AlphaEdge 4D LTD

(Képek: https://sneakernews.com)

Amennyiben szeretne többet megtudni 3D nyomtatási technológiákról, kattintson ide.

3D nyomtatás a szuperhős filmekben is

Blog

UPDATE:

A Fekete Párduc jelmez kategóriában 2019-ben megkapta a legnagyobb elismerést, az Oscart!

 

A kép forrása: Marvel

………………………………………………………………………………………………

2018. január végén jelent meg a talán eddig legjobban várt szuperhős film, a Fekete Párduc. A film óriási sikert aratott és ez részben köszönhető Ruth E. Carternek, aki Hollywoodban nagy tiszteletnek örvendő jelmeztervező, többek között a Malcolm X (1992) és a Selma (2014) című filmekben végzett munkája által ismerik, de sok más filmben jelenített meg nagyon egyedi és bámulatosan szép öltözékeket.

Ebben a filmben is remek munkát végzett, ahol a múlt és a jelen afro-amerikai kultúráját kellett ötvöznie. Ryan Coogler (rendező) világában a legfejlettebb ország Wakanda, melynek lakosai erősen kötődnek gyökereikhez, ebben a futurisztikus technológiával rendelkező, azonban látszólag harmadik világbeli országban.

Ramonda királynő (Angela Bassett) 3D nyomtatóval készített válldísze (Fotó: vogue.co.uk)

Ezt az ellentmondást Ruth E. Carter tökéletesen szemlélteti, mikor megnézzük Ramonda királynő (Angela Bassett) 3D nyomtatóval készített válldíszét, mely a jelenleg elérhető legmodernebb csúcstechnológiával jeleníti meg egy már évszázadok óta létező kultúra jellegzetes jegyeit. A 3D nyomtatás egyik legnagyobb szépsége, hogy terveinknek csupán a képzeletünk szabhat határt, divattervezők is gyakran használják, mivel olyan darabok készíthetőek el vele, melyek más technológiával megvalósíthatatlanok lennének. Ezért, mikor Carter megálmodta ezt a grandiózus kelléket, nem is választhatott volna jobb és különlegesebb kivitelezést, mint a 3D nyomtatás.

Azonban nem ez a válldísz az első kellék, melyet 3D nyomtatóval készítettek szuperhős filmhez. Az előző évben megjelent Thor: Ragnarokban Hela fejdísze is ezzel a technológiával készült.

Készítsünk replikát 3D nyomtatással!

Blog

Ezzel a kézenfekvő, de még korántsem annyira széles körben elterjedt elképzeléssel keresett fel bennünket a Magyar Nemzeti Múzeum a Semmelweis Orvostörténeti Múzeummal karöltve. Az Orvostörténeti gyűjtemény egyik féltett kincsét, egy XVII. századi kisméretű szülészeti tanbabát kellett beszkennelnünk, majd kinyomtatnunk, hogy a programok és kutatások során ne a ritka – mindössze 11 darabról van tudomásunk világszerte! – és nagy értékű, elefántcsontból készült törékeny figurát adják kézről-kézre, hanem annak pontos mását.

Szülészeti tanbaba a XVII. századból (MNM SOM, ltsz.: 77.275.1.1-5)

A szkennelésre a Semmelweis Orvostörténeti Múzeumban került sor, ahol mi is csak kesztyűs kézzel nyúlhattunk a törékeny műtárgyhoz. A szkennelést megnehezítette, hogy a Stephan Zick, nürnbergi mester által faragott szétszedhető szülészeti tanbaba has környéki része számtalan apró kis részletből, szervből áll, amelyek csak a mellkas és hasfal leemelése után válnak láthatóvá, mint például az anyaméh és benne az apró magzat. A szobrocska ráadásul elefántcsontból készült, ami igen szép, de fényes felület és érthető okokból nem mattítható a szkennelés kedvéért.

A nehezítő körülmények ellenére, nagyon szép modellt sikerült létrehozni. A beszkennelt állományon kiegészítettük a hiányzó részeket és tovább finomítottuk Geomagic Design X szoftverrel, ami a világ egyik legmodernebb visszamodellező szoftvere. 

A modell kinyomtatásának egyik legfontosabb szempontja volt, hogy minél jobban hasonlítson a gyönyörű, törtfehér, fényes felületű elefántcsonthoz. A VeroWhite alapanyagra esett a választásunk, amely szín- és felületbeni hasonlósága mellett kiválóan képes visszaadni a részleteket. Egyes elemeket, mint például a hasfalat, VeroClear átlátszó modellanyagból nyomtattuk, ami betekintést enged a méhbe. A többszáz éves műalkotás így visszakerülhetett a vitrinbe, 3D nyomtatott mását pedig tanulmányozhatja a szakma és az érdeklődő közönség is.

Tudjon meg többet a bejegyzésben szereplő modellek kinyomtatásához használt 3D nyomtatókról: Stratasys PolyJet 3D nyomtatók