Egyedi összeszerelési megoldások - Oreck esettanulmány

Egyedi 3D nyomtatott befogó készülékek – Oreck esettanulmány

Oreck esettanulmány

Egyedi összeszerelési megoldások

Az Oreck Manufacturing minden egyes porszívószériához 40-50 azonos összeszerelő palettát gyárt. Ez volt a helyzet a vállalat Titanium sorozatánál, az XL21 álló háztartási porszívónál is. Ez a csúcskategóriás készülék olyan funkciókat biztosít a felhasználó számára, mint a hipoallergén szűrés, az állítható kétsebességes motor és a fejlett hangcsillapító technológia.

A gyártósori paletták pontos pozícióban rögzítik a porszívó felső burkolatát, így a készülék gyorsan és egyszerűen összeszerelhető. Miután a motort, a ventilátorházat és az egyéb tartószerkezeti elemeket elhelyezték az rögzített felső fedélbe, az alsó fedelet ráillesztik.

„Néhány hagyományos befogó készülék projekt több mint 100 000 dollárba kerül, így a megtakarítás jelentős lehet.”

Bill Fish
Oreck

Egyszerűsített összeszerelés

Mindegyik összeszerelő befogó készülék négy műanyag oszlopból áll, amelyek egy szabványos Bosch összeszerelő palettához rögzíthetők. Amellett, hogy a befogó készülék alkatrészei kifejezetten a burkolat rögzítésére szabottak, 0,076 mm tűréssel rendelkeznek, így a burkolatot szilárdan a helyén tartják.

Az Oreck mérnöki csapata szabványos CAD-eszközökkel tervezi meg az egyes befogó készülékekhez szükséges alkatrészeket. Az Oreck vezető modellkészítője, Bill Fish szerint: „A befogó készülékek alkatrészeinek tervezése meglehetősen egyszerű. Már van egy fájlunk a szabványos tartóoszlopokhoz. Ehhez hozzáadjuk a 3D-s felső burkolatot, beágyazzuk a tartóoszlopba, majd eltávolítjuk a burkolatot. Az egész munka körülbelül másfél órát vesz igénybe.”

Korábban az Oreck kizárólag hagyományos módszereket használt az összeszerelő befogó készülékek gyártásához. Ezek közé tartoztak a szilikon- vagy epoxiformák és a betétekkel ellátott uretánöntvények. Néhány évvel ezelőtt az Oreck két FDM technológiájú Fortus 3D gyártási rendszerrel gyarapodott. Az FDM technológia segítségével lehetőségük nyílt a befogó készülékek additív gyártására, amit minden lehetséges alkalommal ki is használnak.
„Az additív gyártás alkalmazása akár 65 százalékkal csökkenti a befogó készülékek gyártási költségeit, mivel a azokat házon belül gyártjuk” – mondta Fish. „Néhány hagyományos befogó készülék projekt több mint 100 000 dollárba kerül, így a megtakarítás jelentős lehet.”
Ilyen arány mellett a gépek már kisszámú projekt esetén is megtérülhetnek.

3D nyomtatott befogó készülék - Oreck esettanulmány
Az Oreck additív gyártást alkalmaz az egyedi összeszerelő paletták gyártásához. Az összeszerelés során a palettába fejjel lefelé helyezik a porszívó felső burkolatát.

A paletta összeszerelő befogó készülék 3D nyomtatása csak a kezdet. A paletták karbantartása szigorú termelési körülmények között legalább olyan fontos, mint az eredeti alkatrészek beszerzése. „Ha valamilyen okból kifolyólag egy befogó készülék használat közben lepattan vagy eltörik, gyorsan és egyszerűen ki tudjuk cserélni házon belül. Bármi, ami miatt egy paletta kiesik a gyártásból, pénzünkbe kerül. A Fortus rendszereket a nap 24 órájában működtetjük” – mondta Fish. 

A befogó készülékek gyártása mellett az Oreck széles körben használja az FDM technológiát prototípusok, valamint a marketingfotókhoz és reklámokhoz szükséges modellek előállítására.
„A gépeket speciális összeszerelő szerszámok, koordináta mérőgépekhez (CMM), mérnöki ellenőrzésekhez  és CNC marószerkezetekhez használatos befogó készülékek gyártására is használjuk. Teljes mockupokat is készítünk. A gépeinknek csak a képzelőerőnk szab határt”.

Eljárás Költség
Hagyományos préselés és öntés
100 000 USD
FDM gyártás
35 000 USD
Megtakarítás
65 000 USD (65%)
Oreck 3D nyomtatott befogó készülék
3D nyomtatott befogó készülék - Oreck esettanulmány
Töltse le a befogóeszközök gyártásáról szóló megoldási útmutatót!

Ismerje meg, hogyan hozhat az additív gyártás új lendületet a befogó készülékek gyártási folyamatába, miközben növeli az idő- és költségmegtakarítást!

Töltse le a 12 oldalas, magyar nyelvű 
Megoldási útmutatót!

Stratasys F370CR kompozit 3D nyomtató a Weber State University-n

Stratasys F370CR kompozit 3D nyomtatóval bővíti az oktatást a Weber State University

A Weber State University a Stratasys F370®CR kompozit nyomtatóval bővíti a 3D nyomtatás oktatását

A Weber State University Stratasys F370CR kompozit nyomtatóval bővíti a 3D nyomtatás oktatását

A Weber State University Fejlett Kutatási és Megoldási Központja innovációs és együttműködési központként szolgál a helyi ipar számára, elsősorban a repülőgépipar, a védelmiipar és a fejlett alapanyagok területén. Az intézmény oktatási és gyakorlati lehetőségeket kínál a hallgatók számára, emellett hozzáférést biztosít különböző kutatás-fejlesztési erőforrásokhoz, többek közt az additív gyártáshoz.

A kihívás

Ahhoz, hogy az egyetem a diákok és a helyi ipar számára a legjobb esélyeket biztosítsa a sikerhez, hozzáférést kell biztosítania a jelenlegi és újonnan megjelenő technológiákhoz, beleértve az additív gyártást is. A Weber State University azonban régebbi típusú 3D nyomtatókkal rendelkezett, amelyek lassan és költségesen működtek, és korlátozott alapanyagválasztékot kínáltak. Ez a helyzet korlátozta az egyetem Fejlett Kutatási és Megoldási Központját a hallgatók és az ipar igényeinek kielégítésében.

A megoldás: kompozit 3D nyomtatás

3D nyomtatási képességeinek megerősítése érdekében az egyetem egy Stratasys F370®CR kompozit 3D nyomtatóval gyarapította gyártóberendezéseinek sorát.

Az F370CR két kompozit anyag és számos egyéb mérnöki hőre lágyuló műanyag használatára képes. A kompozit 3D nyomtató alapanyagok közé tartozik az FDM® Nylon-CF10 és az ABS-CF10, amelyek 10% aprított szénszálat tartalmaznak a nagyobb szilárdság és merevség érdekében.

Kompozit 3D nyomtatás a Weber State University-n

A Stratasys F370CR kompozit 3D nyomtatóval a Weber State University egy korszerű technológia lehetőségeit veheti igénybe, szélesebb körű alapanyag-választékkal, beleértve a fejlett kompozit polimereket is. Az F370CR könnyű kezelhetősége és következetes nyomtatási teljesítménye gyorsabb és megbízhatóbb 3D nyomtatási megoldásokat nyújt a felhasználók számára.

A kompozit 3D nyomtató segíti az egyetemet abban, hogy innovatív és élvonalbeli eszközöket biztosítson jelenlegi és jövőbeli diákjai és ügyfelei számára.

Nylon CF10 méretellenőrző eszköz

Tudta, hogy az additív gyártás legmegbízhatóbb és legnépszerűbb megoldása a Stratasys FDM technológia, és azon belül a karbonszállal erősített alapanyagok? 
Tudta, hogy fém alkatrészeit is kiválthatja könnyű és extra-erős szénszálas kompozit 3D nyomtatott alkatrészekkel?

Ismerje meg a Stratasys megbízható kompozit 3D nyomtatóit a VARINEX csapatától!
25 éve segítjük additív gyártással Magyarország vezető ipari cégeit és innovációikat!

Iratkozzon fel most a VARINEX hírlevélre!

Érdeklik a 3D nyomtatással és 3D szkenneléssel kapcsolatos hírek?

Értesüljön elsőként a 3D technológiákat érintő legfrissebb szakmai hírekről, ipari trendekről, aktuális rendezvényeinkről, kedvezményes ajánlatainkról!

Iratkozzon fel hírlevelünkre most! 

9 fontos dolog a kompozit 3d nyomtatásról

9 dolog, amit a szénszálas 3D nyomtatásról tudni kell

Stratasys kompozit 3D nyomtatás

9 dolog, amit a szénszálas 3D nyomtatásról tudni kell

A szénszálas kompozit anyagok szilárdságuk, merevségük, hőállóságuk és tartósságuk miatt a 3D nyomtatásban a teljesítmény határait feszegetik. A hagyományos hőre lágyuló műanyagokkal szemben jelentős teljesítménybeli előrelépést kínálnak a magasabb követelményeket igénylő 3D nyomtatási alkalmazásokhoz.

A szénszál-erősítésű anyagok úgy készülnek, hogy egy alap polimer anyaghoz aprított vagy folyamatos szálakat adnak hozzá, hogy növeljék annak szívósságát és szilárdságát. A szálak különböző anyagokból, például szénből, üvegből és kevlárból készülhetnek, és egy adott irányba igazíthatók, hogy az adott orientációban maximális szilárdságot biztosítsanak. Az így kapott kompozit anyagok erősebb és tartósabb alkatrészek gyártására alkalmasak.

Mitől olyan vonzó a szénszálak alkalmazása a 3D nyomtatásban?
Ezek az anyagok számos előnyös tulajdonsággal rendelkeznek. Az alábbiakban felsorolunk 9 dolgot, amit érdemes tudni a szénszálak 3D nyomtatásban történő felhasználásáról.
Tartsa ezeket szem előtt, amikor 3D nyomtatási alkalmazásai magasabb szintű teljesítményt igényelnek!

  1. Erősség:
    A szénszál az egyik legerősebb elérhető anyag, és ha alappolimerrel kombinálják, erősebb alkatrészek készíthetők belőle, mint a nem erősített alapanyagokból.
  2. Kis súly:
    A szénszálas FDM-anyagok a fémhez képest könnyebb alternatívát kínálnak, így ideálisak olyan alkatrészek gyártásához, amelyeknek erősnek kell lenniük, de nem fontos, hogy nehezek legyenek.
  3. Tartósság:
    A szálerősítésű hőre lágyuló műanyagok – az adott alappolimertől függően – nagy tartósságot biztosítanak, és ellenállnak a magas hőmérsékletnek és a zord környezetnek.
  4. Merevség: A szénszálak nagyon merevek, ezért ideálisak olyan alkatrészek készítéséhez, amelyeknek merevnek kell lenniük, és formájukat deformáció nélkül kell megőrizniük.
  5. Vegyszerállóság:
    A szálerősítésű anyagok – az alappolimer tulajdonságaitól függően – vegyszerekkel szembeni ellenállóképességet is biztosítanak.
  6. Rugalmas tervezés:
    A szénszálerősített FDM-anyagok olyan összetett geometriájú és alakú, erős alkatrészek létrehozására képesek, amelyeket hagyományos gyártási módszerekkel nehéz vagy lehetetlen lenne elkészíteni.
  7. Költséghatékonyság:
    A kompozit 3D nyomtatás költséghatékonyabb lehet, mint a hagyományos gyártási módszerekkel történő kis sorozatú gyártás.
  8. Kevesebb hulladék:
    A szénszálas 3D nyomtatás csökkentheti a hulladék mennyiségét, mivel csak az alkatrész előállításához szükséges anyagot használja fel.
  9. Hatékonyságnövelés:
    A kompozit anyagok javíthatják a hatékonyságot azáltal, hogy csökkentik az alkatrész létrehozásához szükséges időt és munkaerőigényt a hagyományos technológiákhoz vagy az öntött alternatívákhoz képest.

A Stratasys három szénszálerősítésű kompozit FDM hőre lágyuló műanyagot kínál, ismerje meg őket a képekre kattintva!

ABS alappolimerrel kombinált szénszál

Nylon alapú polimer aprított szénszálakkal keverve

Nylon 12 alappolimer és 30 tömegszázalék aprított szénszál kombinációja

Tudta, hogy az additív gyártás legmegbízhatóbb és legnépszerűbb megoldása a Stratasys FDM technológia, és azon belül a karbonszállal erősített alapanyagok? 
Tudta, hogy fém alkatrészeit is kiválthatja könnyű és extra-erős szénszálas kompozit 3D nyomtatott alkatrészekkel?

Ismerje meg a Stratasys megbízható kompozit 3D nyomtatóit a VARINEX csapatától!
25 éve segítjük additív gyártással Magyarország vezető ipari cégeit és innovációikat!

Stratasys F900 bővülő képességek

Új fejlesztésekkel bővülnek a Stratasys F900 3D nyomtató gyártási képességei

Stratasys F900 ipari 3D nyomtató

Új fejlesztésekkel bővülnek a Stratasys F900 3D nyomtató gyártási képességei

Tudta, hogy a svájci bicskát több, mint 120 évvel ezelőtt találták fel? Azonban a korától függetlenül még ma is sikeres, egy évszázaddal azután, hogy megalkotója, Karl Esener számos hasznos funkciót kombinált egyetlen eszközben. Mi a hosszútávú sikerének titka? Számos időtálló alapelvet követ, amelyek a legtöbb hosszú élettartamú termékre jellemző: 

  • Sokoldalúság – többféle felhasználási célt szolgáló, sokoldalú képességek biztosítása. 
  • Folyamatos innováció – új értékekkel frissítve a változó igények kielégítésére. 
  • Minőség – tartós használatra készült, időtálló és hosszú élettartamú. 

Ugyanezek az alapelvek, amelyek a svájci bicskát megingathatatlan, megbízható eszközzé teszik, képezik a Stratasys F900 3D nyomtató alapját is, amelyet az ügyfelek igazi FDM „igáslóként” emlegetnek. Bár az utóbbi kicsit kifinomultabb, mint az előbbi, az általuk elért eredmények azonosak: megbízható szolgáltatás és bizonyított teljesítmény, amely egyúttal teret enged a folyamatos innovációnak. 

Felhasználók igazolják az F900 sokoldalú képességeit

Félreértés ne essék, az F900 jelentős beruházás lehet bármely vállalkozás számára. Ugyanakkor ez a berendezés az ipari FDM additív gyártási rendszer kifinomultságának és képességének legfelső szintjét képviseli. Valószínűleg ez az egyik fő oka annak, hogy a gyártók szívesen alkalmazzák – az F900 rendelkezik a feladat elvégzéséhez szükséges eszközökkel, legyen szó akár nagyméretű alkatrészek nyomtatásának kapacitásáról, akár űrhajó alkatrészek gyártásához megfelelő alapanyagokról, vagy bármiről e kettő között – mindezt a felhasználók által elvárt, bizonyított pontossággal és megbízhatósággal teszi. 

A repülőgépipari kompozit szerkezeteket gyártó olasz Plyform vállalat azért alkalmazza a 3D nyomtatást a kompozit alkatrészek szerszámainak készítéséhez, mert ez olcsóbb és időhatékonyabb, mint a hagyományos fémszerszámok előállítása. A Stratasys F900 nagyméretű munkatere alkalmas a repülőgépipari vállalatok által nyomtatni kívánt alkatrészek befogadására, és az ULTEM™ 1010 gyanta, az F900 egyik nagy teljesítményű hőre lágyuló műanyaga biztosítja a 3D nyomtatott öntőminták előállításához szükséges alapanyagtulajdonságokat. 

„Az általunk kipróbált additív gyártási technológiák közül a Stratasys F900 kínálja a legjobb pontosságot és ismételhetőséget” – mondja Luca Ceriani, a Plyform gyártástechnológiai vezetője. 

Egy másik repülőgépgyártó vállalat, a brit BAE Systems szintén profitál az F900-as kapacitásának és sokoldalú anyagkínálatának előnyeiből. A vállalat többféle alkalmazáshoz használja F900-asait, azokon a nap 24 órájában, a hét minden napján űripari modelleket, tervellenőrző prototípusokat,  gyártósori eszközöket ésvégfelhasználásra szánt alkatrészeket gyártanak. 

„Tavaly év vége felé telepítettük a legújabb Stratasys F900 3D nyomtatónkat, elsősorban azért, hogy az FDM technológia egyre szélesebb körű alkalmazásával növeljük a kapacitásunkat, de a folyamatos alapanyagfejlesztések is jelentőse előnyt jelentenek számunkra a szerszámozási alkalmazások terén” – mondja Greg Flanagan, a BAE Systems additív gyártási vezetője. 

Ez csupán két példa a már több, mint 1000 telepített F900 közül, ahol az ügyfelek a kapacitás, a széleskörű alapanyagkínálat, a megbízhatóság és a megismételhetőség segítségével javították gyártási folyamatukat. 

Az általunk kipróbált additív gyártási technológiák közül a Stratasys F900 kínálja a legjobb pontosságot és ismételhetőséget.
Luca Ceriani
Plyform gyártástechnológiai vezető

Az új funkciók további értékekkel gazdagítják az F900-at

Ahogy a svájci bicska is alkalmazkodott a modern felhasználáshoz, az F900 is új funkciókat kapott, hogy lépést tartson a gyártók igényeivel. 

A két új nyomtatófej nagyobb extrudálási sebességet kínál, hogy csökkentse az alkatrészgyártási időt, különösen a nagyobb méretű nyomtatások esetén. A T40A és T40C tip-ek 0,050 centiméteres rétegvastagsággal nyomtatják az ULTEM™ 9085 gyantát, illetve az FDM® Nylon 12CF alapanyagot. A két nyomtatófejnek köszönhetően az alkatrész gyorsabban épül fel, ami nagyobb gyártási sebességet tesz lehetővé. A nyomtatási sebesség geometriafüggő, de néhány nagyméretű Nylon 12CF alkatrésznél akár 40%-os növekedés is tapasztalható. Bár a lépcsőzetes felületképzés az alkatrész alakjától függően kissé hangsúlyosabb lehet, ez nem jelent problémát, ha a felületi felbontás másodlagos a gyorsabb alkatrészgyártás prioritásához képest. 

Az alapanyagok terén az F900 felhasználói mostantól a Validált anyagok előnyeit élvezhetik. A Stratasys Validated Materials olyan hőre lágyuló műanyagok, amelyeket egy harmadik fél fejlesztett ki, és megfelelnek a Stratasys minőségi szabványainak, ezeket a Stratasys FDM nyomtatókon végzett alapvető megbízhatósági tesztekkel hitelesítették. Ez az új anyagkategória szélesíti az F900 alapanyagportfólióját, lehetővé téve az új alkalmazások felé nyitó új anyagok gyorsabb bevezetését. Ilyen például a Kimya PC-FR: ez a tűzálló polikarbonát megfelel a vasúti iparág füst- és tűzvédelmi szabványainak, így tökéletes anyag az olyan kis volumenű alkalmazásokhoz, mint az elavult alkatrészek cseréje. 

Stratasys F900 ipari 3D nyomtató

Bizonyított teljesítmény, amely folyamatosan fejlődik a gyártáshoz igazodva

A Stratasys F900 annak az FDM-technológiának a megtestesítője, amely számtalan ügyfélnél már bizonyított az évek során nap mint nap végzett “munkasorán. De ami még ennél is fontosabb, hogy az F900 folyamatosan új funkciókkal és képességekkel bővül, és hozzáadott értéket kínál a felhasználók változó igényeinek kielégítésére. Az új T40 tip-ek és a színes ULTEM™ 9085 gyantákat is tartalmazó Validált anyagok csak két újdonság a közelmúltból, de további hasznos fejlesztések vannak a láthatáron. 

Azon vállalkozásoknál, ahol megbízható ipari additív gyártási képességekre van szükség, a Stratasys F900-nak szerepelnie kell a megfontolás tárgyát képező rendszerek listáján.  

Ha többet szeretne megtudni az F900 képességeiről és értékeiről, látogasson el az F900 3D nyomtató weboldalára!

Számos további információhoz is hozzáférhet, többek között az FDM megismételhetőségének és teljesítményének validálásáról szóló Stratasys White Paper kiadványt is letöltheti! 

Kapcsolódó bejegyzések

Új Stratasys alapanyagok végfelhasználói gyártáshoz és ipari prototípusgyártáshoz

Új Stratasys alapanyagok

Alapanyagkínálatának bővítésével erősíti a végfelhasználói gyártás és az ipari prototípusgyártás iránti elkötelezettségét a Stratasys

A Stratasys négy új alapanyagot jelentett be a P3™ DLP platformhoz és két új alapanyagot, valamint új színeket a Stratasys F900 3D nyomtatóhoz

A Stratasys, a polimer 3D nyomtatási megoldások vezető vállalata négy új alapanyagot – például a Somos® WeatherX™ 100-t – jelentett be P3 technológiájú 3D nyomtatóihoz, valamint új validált alapanyagokat az F900™ additív gyártóberendezéshez, mint például a Kimya PC-FR és az FDM HIPS. Az új alapanyagok bevezetése gyártási alkalmazások szélesebb köréhez nyit utat, és felgyorsítja a piacon elérhető anyagválaszték bővülését.

Négy új alapanyag P3™ DLP technológiához

A Stratasys négy új, az Origin One 3D nyomtatókhoz való nagy teljesítményű anyaggal bővíti a végfelhasználói gyártáshoz és a gyártási minőségű prototípusok készítéséhez használt P3™ DLP platformját.

  • Somos® WeatherX™ 100*
    Környezetálló alkalmazásokhoz, például járműbelsőkhöz, motorkerékpár-alkatrészekhez és kültéri fogyasztási cikkekhez. Megbízhatóbb vizsgálati adatokat biztosít a gyártók számára az anyagok időjárásállóságáról, tartósságáról és méretpontosságáról, mivel a szigorú SAE ipari szabványok szerint tesztelték.
  • Somos® PerFORM™ HW*
    fröccsöntőformákhoz vagy nagy merevségű befogókhoz. Kerámiával töltött anyag, amely nagy kopás- és magas hőmérséklet-állóságot biztosít.
  • P3™ Deflect™ 190 ESD*
    A Henkel-lel közösen kifejlesztett speciális gyanta, az elektronikai és általános gyártás, valamint a szerszámok és házak gyártása során használt jigek és befogók készítésére. Előnyei közé tartozik a 190°C-os HDT (hőterhelési hőmérséklet), az elektrosztatikus disszipatív tulajdonság (ESD) és a nagy merevség.
  • P3™ Stretch™ 80*
    A BASF és a Forward AM által közösen kifejlesztett elasztomer prototípusgyártó gyanta lágy vagy rugalmas alkatrészekhez, például tömítésekhez, szigetelésekhez, markolatokhoz és maszkoló eszközökhöz. Ez az anyag a meglévő elasztomerek megfizethető kiegészítője az elasztomernyomtatást most kezdő vagy a hagyományos poliuretán vagy TPU helyettesítését kereső felhasználók számára.

A Stratasys emellett automatikus támaszgeneráló funkciót is bevezet az Origin One-hoz a GrabCAD Print szoftverben. Ezáltal a munkafolyamatok egyszerűbbé válnak, mivel a felhasználók az anyagtulajdonságok – merev, szívós vagy elasztomer – alapján előre meghatározott támaszprofilok közül választhatnak, vagy testre szabhatják azokat a munkafolyamatok optimalizálása érdekében.

A Stratasys új anyagai több gyártási alkalmazás felé nyitnak lehetőségeket, és gyorsítják a piacon elérhető anyagválaszték bővülését.

Két új alapanyag és új színek az F900 3D nyomtatóhoz

A Stratasys két új anyagot kínál az F900 gyártóberendezéshez, valamint nyolc új színt az ULTEM™, a PC és a PC-ABS alapanyagokból. A kibővített alapanyagcsalád szélesebbkörű felhasználási lehetőséget biztosít, emellett az új színek nagyobb rugalmasságot kínálnak a felhasználóknak, és csökkentik az utófeldolgozási költségeket.

  • Kimya PC-FR
    Égésálló polikarbonát anyag, amely megfelel az EN45545 vasúti alkalmazásokra vonatkozó követelményeknek, és amelyet kifejezetten végfelhasználásra szánt alkatrészekhez terveztek, beleértve a kisszériás gyártást és a cserealkatrészek gyártását.
  • FDM HIPS
    Megfizethető, nagy ütésállóságú, polisztirol alapú anyag, alacsony követelményeket támasztó alkalmazásokhoz.

Mostantól elérhető az F900-hoz is az új OpenAM™ szoftver, amely tartalmazza a nyílt alapanyag-licencet is, lehetővé téve a harmadik féltől származó alapanyagokkal való 3D nyomtatást.

„A validált anyagok portfóliójának bővítése további választási lehetőségeket kínál a felhasználóknak, amelyekkel az alkalmazások szélesebb körét tudják lefedni, és képesek skálázhatóan gyártani” – mondta Dr. Yoav Zeif, a Stratasys vezérigazgatója. „Mivel az additív gyártás továbbra is növekedést élvez, nincs határa, hogy mi minden lehetséges 3D nyomtatással, és örülünk, hogy ebben támogatni tudjuk ügyfeleinket.

* Ezek az anyagok 2023 végén – 2024 elején válnak kereskedelmi forgalomban elérhetővé.

A Somos® WeatherX™ 100 megbízhatóbb vizsgálati adatokat biztosít az anyagok időjárásállóságáról, tartósságáról és méretpontosságáról.

Ismerje meg az Origin 3d nyomtatókat és az F900 additív gyártórendszert!

5 ok, amiért a kompozit 3D nyomtatás forradalmasítja a gyártást

5 ok, amiért a szénszálas kompozit 3D nyomtatás forradalmasítja a gyártási folyamatokat 

5 ok, amiért a szénszálas kompozit 3D nyomtatás forradalmasítja a gyártási folyamatokat

Itt az ideje, hogy felfedezze a szénszálas kompozit 3D nyomtatás világát, mivel számos olyan előnyt kínál, amely hatékonyabbá teheti a gyártási folyamatokat. A Stratasys kompozit 3D nyomtatás geometriától függően 2-4x gyorsabb, mint más szénszálas megoldások. Bemutatunk öt meggyőző okot, amiért ez a csúcstechnológia megreformálja a gyártást. 

1. Fém alkatrészek cseréje vagy fejlesztése szénszálas 3D nyomtatással

Az egyik gyakori aggodalom a gyártás során, hogy a hőre lágyuló műanyagból készült szerszámok valóban elérik-e fém társaik szilárdságát. A meglepő valóság az, hogy az FDM Nylon12CF bevezetésével, amely Nylon 12 és aprított szénszál keveréke, az így kapott hőre lágyuló műanyag rendelkezik a legnagyobb merevség-tömeg aránnyal az összes FDM anyag közül. Ezáltal kiválóan alkalmas a fém alkatrészek helyettesítésére, mivel az alumíniummal vagy acéllal szemben 3-7-szer könnyebb alternatívát kínál, több mint 900 bar nyomószilárdsággal. A legnagyobb előnye? 50-70%-os költségmegtakarítás érhető el vele!

2. A szénszálas 3D nyomtatás előnyeinek kihasználása

A szénszállal megerősített kompozit anyagok a merevség és a szilárdság egy magasabb dimenzióját nyújtják, miközben a teljes súly jelentősen alacsonyabb, mint a hagyományos fém opciók esetében. Az ABS-CF10, amely 10%-os darabolt szénszál és ABS műanyag keveréke, egy olyan 3D nyomtatási anyagot mutat be, amely 50%-kal merevebb és 15%-kal erősebb, mint a hagyományos ABS. Ez a kombináció olyan robusztus szerszámokat eredményez, amelyek megfelelnek a gyári szerszámozási alkalmazások követelményeinek, és leküzdik a hagyományos gyártású szerszámoknál felmerülő ütemezési és költségproblémákat. 

3. A Stratasys F190CR és F370CR 3D nyomtatói és kompozit anyagai felülmúlják a versenytársakat

Ha megbízhatóságról és pontosságról van szó, a Stratasys F190CR és F370CR 3D nyomtatói és kompozitanyagai páratlanok. A lenyűgöző 99%-os rendelkezésre állási idővel és 99%-os méretismétlési teljesítménnyel megbízhat ezekben a gépekben, amelyek konzisztens, kiváló minőségű alkatrészeket készítenek az Ön gyártási igényeihez. 

4. Gyorsítsa fel a termelést és javítsa a munkavállalók biztonságát

A szénszálas alapanyaggal történő kompozit 3D nyomtatás alkalmazásával jelentősen csökkentheti a szerszámok gyártásához szükséges átfutási időt. A hagyományos fémszerszámok gyakran időigényes megmunkálási folyamatokra és külső beszállítókra támaszkodnak, ami meghosszabbodott gyártási ütemterveket eredményez. Emellett a 3D nyomtatott szerszámok előnye, hogy lényegesen könnyebbek, mint fém társaik, így könnyebben kezelhetők, és ezáltal csökken a munkavállalók terhelésének mértéke és sérüléseinek kockázata. 

5. Alkalmazza az innovációt és biztosítsa a jövőre nézve a működését

A gyártási technológia folyamatos fejlődésével a kompozit 3D nyomtatás és a szénszálak integrálása stratégiai lépés, hogy versenyelőnyt szerezzen. A Stratasys által kínált élvonalbeli megoldásokba való befektetéssel Ön olyan eszközökkel és anyagokkal ruházza fel vállalkozását, amelyek szükségesek ahhoz, hogy hatékonyan és eredményesen oldja meg a mindennapi kihívásokat a gyártásban. 

A 3D nyomtatáshoz használható kompozit anyagokkal hatékonyan leküzdhetők a gyártás során mindennapos, az ütemtervet és a költségkeretet illető kihívások.

Tudja meg, hogyan teheti hatékonyabbá a gyártási műveleteket kompozit 3D nyomtatással!

Töltse le most a szénszálas 3D nyomtatásról szóló 4 oldalas, magyar nyelvű tájékoztatónkat!

Név:* Munkahely neve:* Beosztás:* E-mail cím:* Telefonszám:* Hozzájárulok ahhoz, hogy a VARINEX Zrt. hírlevelet, szakmai anyagokat, tájékoztatást küldjön az általam megadott elérhetőségre. A jelen adatkezelési hozzájárulás – amely önkéntes döntésen alapul – a hozzájárulásom visszavonásáig érvényes.

Elolvastam és megértettem az Adatkezelési tájékoztatóban foglaltakat.*

A *-gal jelölt mezők kitöltése kötelező!

TDK Hungary Components Kft. Stratasys Fortus450 3D nyomtatót használ

Az ipari 3D nyomtatás élvonalában – TDK Hungary Components Kft.

Az ipari 3D nyomtatás élvonalában – TDK Hungary Components Kft.

A szombathelyi TDK a nemzetközi TDK csoport egyik legjelentősebb európai elektronikai fejlesztő-és gyártóközpontja, mely Európában és világszerte számos autóipari megrendelő számára szállít termékeket. Koltay Miklós, a TDK Hungary Components Kft. folyamatmérnöke régóta áll kapcsolatban a VARINEX-szel és munkája nagy részében dolgozik a Stratasys Fortus 450 ipari 3D nyomtatóval.

„A jövőbeni bővítés során mindenképpen célszerű az ipari gépek irányába gondolkodni, hiszen 4-8-szor gyorsabbak, mint a kisgépek, tehát egészen más volumenre képesek. Még ha drágábbak is, gyorsabbak és a többlet beruházás hamar megtérül.”

Koltay Miklós, a TDK Hungary Components Kft. folyamatmérnöke a Stratasys Fortus 450 3D nyomtatóval
Koltay Miklós, a TDK Hungary Components Kft. folyamatmérnöke a Stratasys Fortus 450mc 3D nyomtatóval

Mi jut eszébe, ha azt mondom, VARINEX?

Már a korábbi munkahelyemen is volt nyomtatónk a VARINEX- től, és a TDK-nak egy másik részlegén is van már vagy 7-8 éve egy Objet30 Prime nyomtató. Amikor szükségünk lett arra, hogy ipari volumenben gyártsunk és olyan alapanyagokkal, amik megegyeznek az iparban felhasználtakkal, akkor döntöttünk úgy, hogy megvesszük a VARINEX-től a Stratasys Fortus 450-et, ezt a nagygépet, amivel én is dolgozom.

Milyen volt a TDK-nál az élet a gép előtt, és milyen kihívásra jelentett választ a Stratasys Fortus 450-es gépe?

A legfontosabb szempont, ami miatt ezt a gépet megvettük, az ipari alapanyagok skálája volt. Sőt, a mi igényeinkre, amiket az alapanyagokkal szemben támasztunk, jelenleg is ez az egyetlen egy gép ad megfelelő választ a piacon.

A gép előtti időkben még csak készülékeket készítettünk a gyártás számára, gyakorlatilag segédeszközöket. Azután a fejlesztőknek is segítettünk prototípusokkal, de szerettük volna, ha mindez olyan sebességgel és minőségben történne, amit a Stratasys Fortus 450 lehetővé tesz.

A szolgáltatásokat is nagyra értékeljük, ha például bármilyen probléma lép fel a géppel, a VARINEX napokon belül jön szervizelni, sőt, ha a helyzet megkívánja, ki is nyomtatja nekünk az alkatrészeket. Egyszerűen, nincs az, ami az előző gépeinknél volt, hogyha bármi gond adódott, akkor nekem az állásidő volt, és nem tudtam nyomtatni.

Szinte folyamatosan megy a gép?

Elég nagy kihasználtsággal megy, igen, hiszen egész héten naponta legalább 16 órát üzemel.

Mi a gyakorlati tapasztalat, mennyi emberi segítség kell az üzemeltetéshez?

Igazából én vagyok az, aki a labort üzemeli és kezeli a gépet, sőt én tervezek is, szóval nem unatkozom. Most már lehetséges, hogy ahhoz, hogy a gépeinket a későbbiekben ki tudjuk használni, szükségem lesz némi segítségre. Alapvetően a mi részlegünknél a szombathelyi TDK-n belül, én foglalkozom a készülék-tervezéssel. Így kapcsolódtam egyáltalán a 3D nyomtatáshoz, hogy az általam megtervezett készülékeket és alkatrészeket szerettük volna kinyomtatni gyors prototípusként, vagy akár felhasználva a gyártásban is, ha a műanyag lehetővé teszi azt is.

Véleménye szerint várható a 3D nyomtatás iránti igény további növekedése a TDK-nál?

A jövőbeni bővítés során mindenképpen célszerű az ipari gépek irányába gondolkodni, hiszen 4-8-szor gyorsabbak, mint a kisgépek, tehát egészen más volumenre képesek. Még ha drágábbak is, gyorsabbak és a többlet beruházás hamar megtérül.

Ha jól tudom a nemzetközi TDK-n belül is nagy az érdeklődés erre a technológiára, nemcsak Magyarországon. Ez igazából egyfajta „próba” is, most alakítjuk ki a rendszert, hiszen mindenki tudja, hogy a 3D nyomtatás a jövő, vagy legalábbis egy nagy része a most is zajló ipari forradalomnak.

„Szeretem ezt a gépet, mert jó gyors és az alapanyagok össze sem hasonlíthatók hőtűrésben és mechanikai ellenállóságban azokkal, amiket egy sima asztali gép visz.”

Nagyjából hány alkatrész vagy készülék készül el a Fortus-szal egy nap?

Ezt azért nehéz megmondani, mert nagyon különböző méretű darabokról beszélünk az egyes esetekben. A gép paramétereinek köszönhetően nagyon szép felületet is létre lehet hozni az elkészült darabokon, mert ugye az FDM technológia rétegről-rétegre építéssel dolgozik és nagyon komplex geometriák előállítására is képes. Vékonyabb rétegekkel történő felépítés esetén azonban lassabban megy a gyártás, így az adott idő alatt legyártható volumen is csökken, tehát az, hogy hány alkatrészt ad egy nap, a darabok összetettségétől és a kívánt felületi minőségtől is függ, és ez nyilván változik. Komplex geometriáknál az egy darabon mért megtérülés sokkal magasabb, hiszen ezek az alkatrészek hagyományos technológiákkal nem, vagy csak nagyon drágán lennének gyárthatók. De ha egyszerűbb geometriájú, erős alkatrészekre van szükség, azt is tudja, és ott elképesztően gyors.

Mi teszi az Ön számára igazán szerethetővé ezt a gépet?

Szeretem ezt a gépet, mert jó gyors és az alapanyagok össze sem hasonlíthatók hőtűrésben és mechanikai ellenállóságban azokkal, amiket egy sima asztali gép visz. A Stratasys gépeknél megjelenik három szint: a mi gépünk is tudja az all-materialt, tehát a normál alapanyagokat, amihez utána még jönnek az engineering és a high-level alapanyagok is. A legfelső szinten pedig már komoly repülőgép-ipari és űrtechnikai alapanyagok is megjelennek, és mi használjuk is ezeket, ezért is vettük a gépet. Attól egyedülálló számunkra, hogy ezek az anyagok is elérhetőek vele.

 

A Stratasys Fortus 450mc 3D nyomtató pontos, megbízható teljesítményt nyújt, amellyel átalakíthatja az ellátási láncokat, felgyorsíthatja a gyártást és csökkentheti a gyártási költségeket.

Ismerje meg jobban a TDK Hungary Components Kft. által használt Stratasys Fortus 450mc képességeit!

A Toyota a Stratasys F3300 3D nyomtatót választotta

A Toyota fejlesztéseit támogatja majd az első eladott Stratasys F3300 3D nyomtató

A Toyota fejlesztéseit támogatja majd az első eladott Stratasys F3300 3D nyomtató

A polimer 3D nyomtatási megoldások terén piacvezető Stratasys bejelentette, hogy megállapodást írt alá a Toyota-val, az autógyártás és innováció globális iparágvezető vállalatával, amely elsőként vásárolja meg az új, csúcstechnológiás Stratasys F3300 3D nyomtatót.

A Toyota új gyártásai támogatására, többek között alkatrészek és rögzítőelemek gyártására, valamint prototípusgyártási alkalmazásokra fogja használni az F3300 3D nyomtatót, annak érdekében, hogy az új termékek gyorsabban piacra kerüljenek.

Az F3300 a Stratasys legújabb FDM (Fusion Deposition Modeling) 3D nyomtatója, amely a  gyártási kapacitás bővítésére készült. Ez az újgenerációs gyártóberendezés képes összetett, nagy pontosságú, a járműtervezés és -felhasználás szempontjából kulcsfontosságú alkatrészek előállítására – prototípusoktól végfelhasználói alkatrészekig. A 3D nyomtató sokoldalú, gyors alapanyagcserét és -betöltést, valamint automatikus kalibrációt tesz lehetővé és nagy gyártási kapacitást biztosít. Ezekkel a képességekkel az F3300 akár 25 százalékkal csökkenti az alkatrészenkénti költséget, akár kétszer gyorsabban nyomtat, mint bármely más, gyártásra szánt FDM 3D nyomtató, és 25 százalékkal nagyobb pontossággal rendelkezik. Az F3300 által kínált lehetőségek és gyártási kapacitás igazodik a Toyota hírnevéhez, miszerint kiváló minőségű, innovatív járműveket szállít az ügyfeleknek világszerte

„A lehetőség, hogy az F3300 3D nyomtatót beépíthetjük additív folyamatainkba, nagy előrelépést jelent vállalati céljaink elérésében” – mondta Eduardo Guzman, a Toyota fejlett technológiákért felelős vezetője. „Az új 3D nyomtató képességei segítenek felgyorsítani az új additív gyártási lehetőségek bevezetését a gyártási műveleteinkbe.”

„Közös érdekünk, hogy innovációval és kiváló minőséggel szolgáljuk ügyfeleinket, és az együttműködés a Toyotával bizonyítja a jobb, intelligensebb és fenntarthatóbb gyártás iránti közös elkötelezettségünket” – mondta Rich Garrity, a Stratasys gyártástámogatási üzletágának vezetője. „A gyártást szem előtt tartva fejlesztett F3300 újradefiniálja az additív gyártást a gyárakban, gyorsaságával, alacsonyabb költségeivel és egyszerű kezelhetőségével.”

A Toyota vásárolta meg az első Stratasys F3300 3D nyomtatót
Dallas Martin, additív alkalmazásmérnök, Toyota (balra) és Scott Crump, a Stratasys innovációs igazgatója az új Stratasys F3300 mellett, amelyet 2023. november 7-én mutattak be a Formnext additív gyártási szakkiállításon, Németországban.
Stratasys F3300 3D nyomtató
A Toyota az új Stratasys F3300-at új gyártástámogató és prototípusgyártó alkalmazásokhoz fogja használni, hogy a termékek gyorsabban piacra kerüljenek.
Új Stratasys FDM 3D nyomtató debütál a Fomnext-en

Sajtóhír: Itt a Stratasys F3300 – pontosabb, gyorsabb FDM additív gyártóberendezés

Az additív gyártás ipari alkalmazásában támasztott egyre magasabb elvárások kielégítésére a Stratasys legújabb 3D nyomtatója még nagyobb pontosságot, rendelkezésre állási időt és legalább kétszeres gyártási kapacitást biztosít

Az iparban elsősorban a teljesítmény számít. A pontosság, az ismétlési pontosság és a megbízhatóság a legfontosabb a profittermeléshez. A gyártó- és fejlesztő vállalkozások tudják ezt leginkább, nekik készült az F3300 3D nyomtató, amely kibővíti az additív gyártás alkalmazhatóságának körét, és a legjobb FDM 3D nyomtató az ipari kategóriában.

A Stratasys, a polimer 3D nyomtatás és az additív gyártási megoldások piacvezető vállalata a 2023. november 7-10. között Frankfurtban megrendezésre kerülő Formnext kiállításon és konferencián mutatja be új F3300 Fused Deposition Modeling (FDM) 3D nyomtatóját. Ez az innovatív 3D nyomtató páratlan értéket kínál a gyártás területén tevékenykedő vállalkozások számára a csökkentett munkaerő-igény, a maximalizált üzemidő, valamint a magasabb alkatrészminőség és gyártási kapacitás révén.

Az FDM feltalálói által gyártóipari felhasználásra készített F3300 a legfejlettebb ipari 3D nyomtató lesz a piacon. Kialakítása és fejlett funkciói átalakítják az additív gyártás alkalmazását a legmagasabb igényeket támasztó iparágakban is, mint például a repülőgépiparban, az autóiparban, a hadiiparban és a bérgyártással foglalkozó vállalkozásokban. Az F3300 2024-től lesz elérhető.

Az additív gyártás az alábbi fejlesztésekkel vált egyre inkább versenyképessé a többi gyártási technológiával szemben:

  • Gyorsabb nyomtatás: megnövelt portálsebességgel, nagyobb extrudálási kapacitással és automatikus kalibrációval, minimalizált állásidővel.
  • Magasabb alkatrészminőség és nagyobb gyártási kapacitás: akár 25%-kal növelt gyártási kapacitás, javított pontossággal és ismétlési pontossággal, valamint a nyomtató automatikus kalibrációjával együtt.
  • Maximalizált üzemidő: távoli gépfelügyelettel, extruder redundanciával és egy olyan felhasználói felület kialakításával, amely a könnyű kezelhetőséget helyezi előtérbe.
  • Alacsonyabb költségek: 25-45%-kal alacsonyabb gyártási költség alkatrészenként más Stratasys FDM megoldásokhoz képest.
A legújabb Stratasys 3D nyomtató: F3300
Stratasys F3300 3D nyomtató

„Ez az újgenerációs additív gyártási rendszer lehetővé teszi a felhasználók számára a termelés bővítését, és csökkenti az additív és a hagyományos gyártási megoldások közötti döntésekben a kompromisszumok szükségességét” – mondta Rich Garrity, a Stratasys gyártástámogatási üzletágának vezetője. „A globális ellátási lánc növekvő kihívásai, a hagyományos kapacitáskorlátok és az alkalmazások összetettsége hihetetlen terhet rónak a gyártásra. Az F3300 lehetővé teszi az ügyfeleink számára, hogy felgyorsítsák a termékfejlesztést, így gyorsabban tudják az újításokat bevezetni. A legújabb FDM ipari 3D nyomtató segít leküzdeni a gyártási kihívásokat, ezzel gyorsabban piacra jutnak a vállalatok, és maximalizálják a befektetésük megtérülését.” – tette hozzá.

Az F3300 a Stratasys FDM 3D nyomtatócsaládjának legújabb tagja, amely az F900, F770, F450mc és az F123 sorozatot foglalja magában. Az F3300 kiegészíti a Stratasys F900-as modelljét, amely a megbízhatóságáról, nagy kapacitásáról és a nagy teljesítményű anyagok használatáról ismert.

A Stratasys 2023. november 7-én 17:30-kor (CET) egy különleges élő eseményt tart az F3300 bemutatására. Kérjük, kattintson az alábbi gombra, hogy biztosítsa helyét az eseményen, vagy nézze meg a premier élő közvetítését!

A STRATASYS-RÓL

A Stratasys az additív gyártásra való globális átállás élharcosa, aki olyan iparágak számára kínál innovatív 3D nyomtatási megoldásokat, mint a repülőgépipar, az autóipar, a fogyasztási cikkek és az egészségügyi szektor. Az intelligens és csatlakoztatott 3D nyomtatók, a magas minőségű polimer alapanyagok, a teljeskörű szoftveres ökoszisztéma és az igény szerint gyártott alkatrészek révén a Stratasys megoldásai a termék-életétciklus minden szakaszában versenyelőnyöket biztosítanak. A világ vezető szervezetei a Stratasys-hoz fordulnak a terméktervezés átalakítása, a gyártás és az ellátási láncok agilitása, valamint a betegellátás javítása érdekében.

Három inspiráló történet​: a gyártás fejlesztése szénszálas 3D nyomtatással

A gyártás fejlesztése szénszálas 3D nyomtatással: Három inspiráló történet

A gyártás fejlesztése szénszálas 3D nyomtatással: 3 esettanulmány

A szénszálas kompozit 3D nyomtatók, például a Stratasys F370®CR képességeinek segítségével a vállalatok kihasználhatják a szénszállal töltött hőre lágyuló műanyagok előnyeit, additív gyártással forradalmasítva a gyártási folyamatokat. Ebben a blogbejegyzésben három figyelemre méltó történetet vizsgálunk meg, amelyben a vállaltok felismerték a szénszálas 3D nyomtatásban rejlő lehetőségeket, bemutatva annak hatékonyságát, erejét és sokoldalúságát.

A Graco kihasználja a kompozit 3D nyomtatás erejét

Graco: A hatékonyság növelése ergonomikus szerszámmarkolatokkal

A Graco vállalat, amely a folyadék- és bevonatkezelő rendszerek egyik legnagyobb gyártója, kihívással nézett szembe festékszóróinak nyomásszabályozó szerszámával kapcsolatban. A meglévő ABS műanyag eszköz fogazatai többszöri használat során elkoptak, ami gyakori cserét tett szükségessé. A vállalat olyan költséghatékony, tartós és könnyen gyártható megoldást keresett, amely nem igényelt gyakori cserét.

A megoldás: Kompozit 3D nyomtatás szénszállal
A Stratasys F370®CR kompozit 3D nyomtató beszerzésével a Graco mérnökei az FDM® Nylon-CF10 hőre lágyuló műanyagot választották, amely 10% aprított szénszállal kevert anyag, amely az ABS-hez képest nagyobb szilárdságot és szívósságot biztosít. A 3D nyomtatott kéziszerszám ergonomikus fogantyúval rendelkezik, amelyet gyorsabb és könnyebb előállítani, és felülmúlja a hagyományos megmunkálással készült alternatívát.

J.W. Speaker: Járműipari lámpatestek gyártásának racionalizálása

A nagy teljesítményű járművilágítások gyártásáról ismert J.W. Speaker Corporation számára kihívást jelentett az újonnan fejlesztett lámpatestek szivárgásvizsgálata. A hagyományos megközelítés az egyedi befogók alumíniumból történő gyártását jelentette, ami idő- és erőforrás-igényes folyamat volt.

A megoldás: 3D nyomtatás alkalmazása szénszálas anyagokkal
Az FDM® NylonCF10 szénszálas anyagból történő 3D nyomtatással a J.W. Speaker szerszámtervezői figyelemre méltó eredményeket értek el. A szénszállal kevert anyag megnövelt merevséget és szilárdságot kínál, ami alkalmassá teszi a nagyobb igénybevételt kívánó alkalmazásokhoz. A Stratasys F370CR kompozit 3D nyomtató lehetővé tette a csapat számára, hogy 80%-kal csökkentse a szerszámgyártási időt, nagyobb rugalmasságot biztosítva a szerszámtervezésben.

Mercury Marine: Gyorsabb és robusztusabb egyedi maszkoló készülékek

A Mercury Marine, a fogyasztói és kereskedelmi hajók motoros rendszereinek egyik kiemelkedő gyártója kihívásokkal szembesült a motorháztetőkre történő matricák felragasztásához szükséges egyedi maszkoló-eszközök gyártása során. A hagyományos módszerek költségesek és időigényesek voltak, ami a károsodások és kopások miatt gyakori cserékhez vezetett.

A megoldás: Szénszálas 3D nyomtatási technológia
A Mercury Marine tervezői a Stratasys F370®CR kompozit 3D nyomtatót és a nagy szilárdságú szénszálas kompozit hőre lágyuló műanyagokat használták fel egy innovatív matrica-felhordó befogóeszköz kifejlesztéséhez. Az FDM® Nylon-CF10 és az FDM® TPU-92A (rugalmas hőre lágyuló poliuretán) kombinációja olyan befogót eredményezett, amely illeszkedik a motorházfedél görbületéhez, és elkerülhető vele a felületet megkarcolása.

Összegzés

A 3D nyomtatási technológia és a szénszálas anyagok kombinációja a hatékonyság, az erő és a sokoldalúság új korszakába repítette a gyártóipart. A Stratasys F370®CR kompozit 3D nyomtatóhoz hasonló szénszálas 3D nyomtatók alkalmazásával olyan vállalatok, mint a Graco, a J.W. Speaker és a Mercury Marine újradefiniálták szerszámkészítési folyamataikat, optimalizálva a termelékenységet, csökkentve a költségeket és lehetővé téve a rugalmas tervezési iterációkat. Ahogy a szénszálas 3D nyomtatásban rejlő lehetőségek tovább bővülnek, a technológia komoly ígéreteket hordoz az innováció előmozdítására a legkülönbözőbb iparágakban. Ennek az innovatív technológiának a használata már nem arról szól, tudunk-e szénszálat nyomtatni, hanem egy lehetőségként tekintsünk rá, amely segít a gyártási folyamatok forradalmasításában és a fejlődés élvonalában maradásban. A komplex, alámetszett geometriák gyártását a Stratasys által használt oldható támaszanyag tette lehetővé a fenti példákban.

A fent említett vállalatok már felismerték a szénszálas 3D nyomtatásban rejlő lehetőségeket, annak hatékonyságát, erejét és sokoldalúságát.

Töltse le a 3 magyar nyelvű, inspiráló esettanulmány bővebb verzióját most!

Három inspiráló történet​: a gyártás fejlesztése szénszálas 3D nyomtatással
Név:* Munkahely neve:* E-mail cím:* Munkahelyi telefonszám:* Hozzájárulok ahhoz, hogy a VARINEX Zrt. hírlevelet, szakmai anyagokat, tájékoztatást küldjön az általam megadott elérhetőségre. A jelen adatkezelési hozzájárulás – amely önkéntes döntésen alapul – visszavonásáig érvényes.

Elolvastam és megértettem az Adatkezelési tájékoztatóban foglaltakat.*

A *-gal jelölt mezők kitöltése kötelező!

A Stratasys FDM és az FFF technológia összehasonlítása

A Stratasys FDM és az FFF 3D nyomtatás közötti legfontosabb különbségek áttekintése

FDM vs FFF összehasonlítás: különbségek és az iparágra gyakorolt hatások

A Stratasys FDM és az FFF 3D nyomtatás közötti legfontosabb különbségek megértése

Fogalomtár és eredet:
Az FDM, azaz olvasztott huzallerakásos modellezés (Fused Deposition Modeling) a Stratasys által kifejlesztett, szabadalmaztatott technológia, amely az elmúlt több mint 30 évben 1820 szabadalmi bejegyzést kapott, amelyből 1380 szabadalom aktív, és a Stratasys védjeggyel rendelkezik erre a kifejezésre. A Fused Filament Fabrication (FFF) egy szintén a műanyag huzal megolvasztására épülő technológia, amelyben nem használják azokat az innovációkat, amelyeket a Stratasys szabadalommal védett. 

3D nyomtató berendezések:
Az elnevezések közötti különbségek ellenére az FDM és az FFF mögött álló alapkoncepció azonos. Mindkét módszer során megolvasztott hőre lágyuló anyagot juttatnak a felületre egy fúvókán keresztül, hogy a tárgyakat rétegről rétegre felépítsék. Az elsődleges különbség a nyomtatáshoz használt berendezésekben és azok technológiai fejlettségében rejlik. A Stratasys FDM technológia kifejezetten a Stratasys által tervezett és gyártott 3D nyomtatókat használ, amelyekben a műanyag feldolgozásához szükséges környezeti paraméterek biztosítása köré épül a berendezés, az FFF technológia nyílt forráskódú, ami lehetővé teszi, hogy különböző gyártók kompatibilis 3D nyomtatókat gyártsanak, első sorban olyan alapanyagok feldolgozására, amelyek nem igényelnek speciális környezeti paramétereket.

Alapanyagválaszték:
A Stratasys FDM és FFF közötti másik jelentős különbség az alapanyagok feldolgozásának technológiai minőségében rejlik. A Stratasys FDM nyomtatók a nagy teljesítményű és műszaki minőségű hőre lágyuló műanyagok szélesebb választékát támogatják, beleértve az Antero (PEKK) és ULTEM™ (PEI) anyagokat. Ezek az alapanyagok kiváló mechanikai tulajdonságokkal, hőállósággal és vegyi ellenállással rendelkeznek, így megfelelnek a szigorú repülőgépipari, autóipari és egészségügyi előírásoknak. Ezzel szemben az FFF nyomtatók jellemzően a mérnöki és a magas hőállóságú alapanyagok közül szűkebb alapanyagválasztékot kínálnak, leginkább a PLA, PETG alapanyagok nyomtatására alkalmasak, de így sem garantálják a sikeres gyártásokat és az ismtlési pontosságot, vagyis, hogy többször ugyanabban a minőségben képesek legyártani egy adott alkatrészt.

Nyomtatási minőség és pontosság:
Stratasys FDM 3D nyomtatók az ellenőrzött gyártási folyamatnak és a fejlett technológiának köszönhetően nagy pontosságukról és nyomtatási minőségükről ismertek. Ezek a 3D nyomtatók legalább két nyomtatófejjel rendelkeznek, amely lehetővé teszi támaszanyag használatát az összetett geometriák nyomtatásához. Az eredmény minimális utófeldolgozást igénylő, használatra kész termékek, gyorsan, határidőre, az ipar igényeit kielégítő ismétlési pontossággal. Az FFF nyomtatók a nyomtatás minőségében és pontosságában nagy szórást mutatnak.

Költségek és megfizethetőség:
A Stratasys olyan iparágakat céloz meg, amelyekben a gyártósorok működésének biztosítása kiemelten fontos, illetve olyan iparágakat, amelyek high-end megoldásokat is igényelhetnek. A Stratasys és a VARINEX elismert a minőség és a terméktámogatás iránti elkötelezettségéről. Ezzel szemben az FFF 3D nyomtatók az alacsonyabb ár miatt népszerűek a hobbisták, az oktatók és a kisvállalkozások számára, nekik ajánljuk a https://makerbotshop.hu weboldalunkat, ahol jó minőségű UltiMaker FFF 3D nyomtatók közül válogathatnak.

Összefoglalás:
A Stratasys FDM technológiája általában havi szinten több tízezer eurós megtérülést hoz a gyártásban érdekelt vállalkozásoknak, mert olyan alkalmazások kielégítésére is alkalmas, amelyre az FFF technológia nem, vagy nagyon korlátozottan. Ugyanakkor az FFF elérhetőbb és megfizethetőbb belépési lehetőséget kínál a 3D nyomtatás világába, ami a felhasználók szélesebb körét szólítja meg. Ettől függetlenül az FFF technológiával szerzett tapasztalatok alapján nem lehet megítélni, hogy az adott vállalkozásnál milyen alkalmazási lehetőségei vannak egy Stratasys FDM 3D nyomtatónak, mert a két technológia alapelve ugyanaz, de a felhasználásának lehetőségei teljesen különböznek. Kétségtelenül mind az FDM, mind az FFF jelentős szerepet játszott az additív gyártás világának fejlődésében.

szénszálas 3D nyomtatás a gyártóüzemben
szénszálas 3D nyomtatott fúrósablon

Tudjon meg többet az FDM 3D nyomtatott szerszámok integrálásáról!

Töltse le a 13 oldalas, magyar nyelvű kompozit 3D nyomtatási megoldási útmutatót!

Töltse le "A gyártási műveletek hatékonyabbá tétele kompozit 3D nyomtatással" ismertetőt!
Név:* Munkahely neve:* E-mail cím:* Munkahelyi telefonszám:*  Hozzájárulok ahhoz, hogy a VARINEX Zrt. hírlevelet, szakmai anyagokat, tájékoztatást küldjön az általam megadott elérhetőségre. A jelen adatkezelési hozzájárulás – amely önkéntes döntésen alapul – visszavonásáig érvényes.

* Elolvastam és megértettem az Adatkezelési tájékoztatóban foglaltakat.

Aurora Flight Science esettanulmány

A repülés jövőjének formálása

Az amerikai Aurora Flight Sciences közel három évtizede fejleszt pilóta nélküli légi járműveket (UAV) mind a polgári, mind a katonai piac számára. A közelmúltban  a Stratasys mérnökeivel együttműködve egy ambíciózus projektbe kezdtek: egy sugárhajtású, távirányítású repülőgép építésébe fogtak.

A szárnyakat és a törzset Stratasys Fortus 3D nyomtatókkal gyártották ASA hőre lágyuló műanyagból, hogy biztosítsák a szükséges szilárdságot es merevséget. A repülő gyártási ideje felére csökkent az additív gyártás alkalmazásával, a szerszámozás szükségességének kiküszöbölése pedig jelentősen csökkentette az átfutási időt.

3D nyomtatott alkatrészekkel készült sugárhajtású repülő

Továbbra is tartja magát az a tévhit, hogy a 3D nyomtatás egy prototípuskészítési technológia. De ez nem egy asztali modell, ami eltörik, ha hozzáérnek. Ez egy 240 km/h sebességre képes sugárhajtású repülő!"

A 3D nyomtatás egyik alapvető előnye a felületi geometrián túlmutató tervezés lehetősége. Míg más vázszerkezetek tervezése ma már sokkal nagyobb szabadságot élvez, a repülőgépiparnak szánt mérnöki szerkezetek tervezése bonyolultabb feladat. A Stratasys additív gyártástechnológiájának segítségével optimalizálható volt a tervezés, így merev, könnyű szerkezetet hozhattak létre, miközben lehetővé vált egy személyre szabott, küldetés-specifikus repülőgép költséghatékony fejlesztése.

Milyen nehézségekkel kellett az Aurora Flight Sciences-nak szembenéznie, és hogyan épített additív gyártás segítségével 240 km/h órás sebességre képes repülőgépet?

 

3D nyomtatott alkatrészekkel gyártott sugárhajtású repülő

Töltse le a 4 oldalas, ingyenes, magyar nyelvű esettanulmányt most!​

Név:* Cégnév:* E-mail cím:* Telefonszám:* Hozzájárulok ahhoz, hogy a VARINEX Zrt. hírlevelet, szakmai anyagokat, tájékoztatást küldjön az általam megadott elérhetőségre. A jelen adatkezelési hozzájárulás – amely önkéntes döntésen alapul – visszavonásáig érvényes.

* Elolvastam és megértettem az Adatkezelési tájékoztatóban foglaltakat.

SAJTÓKÖZLEMÉNY: A Stratasys két új kompozitgyártásra optimalizált 3D nyomtatóval bővíti F123 sorozatát

A Stratasys két új kompozitgyártásra optimalizált 3D nyomtatóval bővíti F123 sorozatát

Az új nyomtatók és a nylon-szénszálas anyag az additív gyártás új alkalmazási lehetőségeit biztosítják a gyártósoron

A Stratasys a polimeralapú 3D nyomtatási megoldások egyik piacvezetője bejelentette, hogy az F190CR és az F370®CR modellekkel bővítette az F123 Series3D nyomtatók családját, az új, szénszállal erősített FDM® Nylon-CF10 anyag bevezetése mellett. Az új nyomtatók kiemelkedő merevségű és strapabíróságú anyagokkal is dolgoznak, megerősített, kompozitgyártásra kifejlesztett gépek. Az új kompozit 3D nyomtatók gyártók és ipari gépkezelők számára készültek azzal a céllal, hogy a hagyományos gyártási technológiákat nagy teherbírású kompozit anyagok 3D nyomtatásával egészítsék ki. A nyomtatók segítségével gyorsabban és költséghatékonyabban gyárthatók végfelhasználói alkatrészek, ideálisan használhatók befogószerszámok, szerelési ülékek és más munkadarabtartó szerszámok előállításához.

„Több mint 35 éve dolgozom mérnöki területen, és közel áll hozzám az innováció – nem csupán az új termékek fejlesztésében, de a termékek fejlesztése során alkalmazott folyamatok és eszközök terén is. A Stratasys több mint 20 éve teszi ezt lehetővé számomra a 3D nyomtatás révén” – mondta Dave Thompson, a Graco Inc. globális mérnöki tervezésért, vevőszolgálatért és alvállalkozói berendezésekért felelős részlegének alelnöke. A minneapolisi székhelyű Graco Inc. a folyadékkezelő berendezések egyik globális piacvezetője és az F370CR bétatesztelő ügyfele.

 

Az új 3D nyomtatók és a nylon-szénszálas anyag az additív gyártás új alkalmazási lehetőségeit biztosítják a gyártósoron

„Az évek során kibővítettük a Stratasys nyomtató flottánkat, valamint azok alkalmazási körét is a prototípuskészítésen kívül a szerszámok, szerelési ülékek és a robotjaink által használt fogószerszámok előállítására. Az új Stratasys F370CR nyomtató lehetővé teszi számunkra, hogy új szintre emeljük a fejlett gyártási alkalmazásainkat, megnöveljük a szerszámaink élettartamát, valamint akár jobb felületi minőséget érjünk el.”

Az új 3D nyomtatók részét képezi az integrált GrabCAD Print szoftver, amely egyszerű, intuitív munkafolyamatot biztosít a CAD fájlok és a 3D nyomtatás között, illetve fejlett funkciókkal gondoskodik a nyomtatás sikeréről. A Stratasys a vállalati alkalmazásokhoz való csatlakoztathatóságot is biztosítja az MTConnect szabvány és az általa fejlesztett GrabCAD szoftverfejlesztői készlet révén. A kompozitgyártásra optimalizált F123 sorozatú 3D nyomtatók részét képezik a többször használható nyomtatótálcák, a távoli megfigyelést szolgáló beépített kamera és a közel 18 centiméteres vezérlő érintőképernyő. Az F370CR nyomtató emellett automatikus alapanyagcserét is biztosít, ami azt jelenti, hogy nem szükséges megszakítani a nyomtatást az anyagok cseréjéhez – a rendszer egyszerűen behelyez egy új kazettát, és a nyomtatás folytatódik.

 

Az új kompozit 3D nyomtatók gyártók és ipari gépkezelők számára készültek azzal a céllal, hogy a hagyományos gyártási technológiákat nagy teherbírású kompozit anyagok 3D nyomtatásával egészítsék ki

„A Stratasys olyan 3D nyomtatókat és alapanyagokat biztosít, amelyek elősegítik a fejlett gyártás bővítését a gyártósoron, például ezeket az új CR 3D nyomtatókat, amelyekkel strapabíróbb, merevebb anyagokkal, nagyobb pontossággal nyomtathatunk” – mondta a Stratasys gyártásért felelős alelnöke, Dick Anderson. „Ellenőrzött és közzétett adatok bizonyítják, hogy ezek az új nyomtatók akár 99%-os méretismételhetőségre képesek az alkatrész méretétől és geometriai összetettségétől függetlenül. Ezt a 99%-os üzemidővel, valamint az egyedi szerviz- és támogatási szolgáltatással kombinálva a gyártók bátran felgyorsíthatják az additív gyártásra való áttérést.”

Más nyomtatókkal szemben a Stratasys kompozit gyártásra optimalizált F123 sorozatú nyomtatói több fajta alapanyagot kínálnak nagyobb nyomtatási kapacitás mellett, oldható támasztóanyagokkal és alacsonyabb nyomtatási költségekkel a nagyobb nyomtatótérnek köszönhetően. Továbbá más nyomtatókhoz képest az F370CR nagyobb, teljes mértékben fűtött, stabilizátorfalakkal kombinálható nyomtatókamrája lehetővé teszi a felhasználók számára, hogy magasabb alkatrészeket nyomtathassanak, kiváló mechanikai és esztétikai minőségben.

A Stratasys ezen kívül bevezette az FDM Nylon-CF10 nevű új kompozit alapanyagot is az F123 sorozatú nyomtatókhoz. Ez az anyag több mint 60%-kal strapabíróbb, és közel háromszor merevebb, mint az alapjául szolgáló nylon anyag. A feldarabolt szénrostokból álló anyag csak egy az F123 sorozatú nyomtatókhoz elérhető számos hőre lágyuló alapanyag közül. Ezt az anyagot a Stratasys oldható támasztóanyagaival kombinálva a gyártók korlátozás nélkül, bármilyen geometriát kinyomtathatnak. Az F190CR és F370CR nyomtatók ezen kívül számos egyéb módosított, hőre lágyuló anyagot is támogatnak.

Az új kompozit-kompatibilis F123 sorozatú nyomtatók és az FDM Nylon-CF10 anyag mostantól rendelhető, várhatóan júniusi kiszállítással. A Stratasys új gyártási megoldásairól egy élő esemény keretein belül osztotta meg az információkat, amely utólag visszanézhető. További információért felkeresheti a Stratasys kompozitgyártásra optimalizált F123 sorozatának termékoldalát is.

A Stratasys innovatív 3D nyomtatási megoldásokkal vezeti a globális eltolódást az additív gyártási technológiák felé olyan iparágakban, mint a repülőgépipar, az autóipar, a fogyasztási cikkek gyártása vagy az egészségügy. A Stratasys-megoldások intelligens és összekapcsolt 3D nyomtatókkal, polimer anyagokkal, szoftverek ökoszisztémájával és rendelésre elérhető alkatrészekkel biztosítják a versenyelőnyt a termékértéklánc minden eleménél. A világ vezető szervezetei is a Stratasys segítségével alakítják át termékeik dizájnját, növelik gyártási és ellátóláncaik rugalmasságát, valamint javítják a betegellátás minőségét. Ha szeretne többet megtudni a fenti termékekről, keresse a Stratasys termékek magyarországi forgalmazóját, a VARINEX Zrt.-t (3dp@varinex.hu,)

Stratasys F770 nagy alkatrészek 3D nyomtatásához

A Stratasys új F770 3D nyomtatója megkönnyíti a nagy alkatrészek 3D nyomtatását

A Stratasys F770™ 3D nyomtató a piacon leghosszabb teljesen fűtött építési kamrával rendelkezik – 1171 milliméter az átlómérete
A Stratasys F770™ 3D nyomtató a piacon leghosszabb teljesen fűtött építési kamrával rendelkezik – 1171 milliméter az átlómérete

A Stratasys bemutatott a gyártók számára egy új, nagy formátumú FDM® 3D nyomtatót.
A Stratasys F770™ 3D nyomtató a leghosszabb teljesen fűtött építési kamrával rendelkezik a piacon. 1171 milliméter az átlómérete, tágas, több, mint 370 literes az építési tere. Ezzel új lehetőségeket nyit az ipari gyártás, prototípuskészítés és a gyártósori alkatrész alkalmazások terén. A 100 000 dollár alatti áron kapható F770 3D nyomtató már most rendelhető és várhatóan június végén kerül kiszállításra.

Az F770 standard hőre lágyuló műanyagokat és oldható támaszanyagot használ. Ez lehetővé teszi komplex belső szerkezetű alkatrészek tervezését és 3D nyomtatását, minimális utómunkával. Ezenkívül az integrált GrabCAD Print™ szoftverrel közvetlenül CAD állományokból történhet a 3D nyomtatás, még a nagy kiterjedésű, összetett geometriájú alkatrészek esetében is. A berendezés a vállalatirányítási rendszerekkel is összekapcsolható az MTConnect szabványon és a GrabCAD Szoftverfejlesztő Készleten keresztül. A mobileszközös felügyelőrendszer és a beépített kamera egész napos távfelügyelet alatti üzemeltetést tesz lehetővé. A hét minden napján, akár 140 órás, alapanyagcsere nélküli, közvetlen felügyelet nélküli nyomtatást biztosít.

Nagy alkatrészek 3D nyomtatása házon belül

A luxus készüléket gyártó Sub-Zero Group az F770 3D nyomtatót olyan elemek gyártására használja, amelyek korábban túl nagyok voltak ahhoz, hogy házon belül készítsék
A luxus készüléket gyártó Sub-Zero Group az F770 3D nyomtatót olyan elemek gyártására használja, amelyek korábban túl nagyok voltak  ahhoz, hogy házon belül készítsék

Az amerikai Sub-Zero Group Inc. luxus készülékeket gyárt, és az F770 egyik béta tesztelője volt. Doug Steindl, a vállalati fejlesztési laboratórium vezetője elmondta, hogy ez a 3D nyomtató segít a nagyobb alkatrészek nyomtatásának házon belül tartásában, 30–40 százalékos költségmegtakarítást eredményezve.  „3D nyomtatási laboratóriumunk hathetente új termék építéssel néz szembe. Minél gyorsabban tudjuk befejezni a dolgokat, annál jobb! És ennek az a leggyorsabb módja, ha a lehető legtöbb munkát házon belül tartjuk. Az F770 megfelel ennek az igénynek.”

Az F770 segít a gyártóknak kiküszöbölni a hagyományos megmunkálás magas költségeit és hosszú átfutási idejét, néhány csúcsminőségű 3D nyomtató bonyolultságát, valamint számos más, a piacon elérhető alsó kategóriás, nagy formátumú 3D nyomtató gyenge minőségét és rejtett költségeit. Az F770 a Stratasys F123 sorozatának intuitív kezelőfelületét és könnyű használatát nyújtja, jumbo méretben. A rendszer pontossága jobb, mint 0,25 mm az XY tengelyen, és 1000 x 610 x 610 mm-es építési térrel rendelkezik. A legfontosabb alkalmazási területei: nagy méretű jig-ek és befogó készülékek, terjedelmes funkcionális prototípusok, például jármű panelek, valamint nagy nyomtatási tálcák tele kis méretű gyártósori alkatrészek gyártása. 

Ideje nagyban gondolkodni

„Itt az ideje nagyban gondolkodni” – mondta Dick Anderson, a Stratasys Manufacturing alelnöke. „Ahogy a 3D nyomtatók használata elterjed a gyártóüzemekben, ez a berendezés elérhetővé teszi számukra a nagy méretű, vagy nagy darabszámú alkatrészek 3D nyomtatását. Ugyanakkor tapasztalataink a világ vezető vállalataival megtanítottak minket arra, hogy a minőségi alkatrészek nem alkuképesek, és a munkaerő termelékenysége és a tőkeköltségek elengedhetetlenek a versenyelőnyhöz. Az F770-et úgy készítettük el, hogy hibátlanul megfeleljen minden gyártási elvárásnak.

A Stratasys F770 3D nyomtatóhoz elefántcsontszín ASA, és fekete ABS-M30™ alapanyag, és az SR-30™ oldható támaszanyag érhető el.

Amennyiben felkeltette érdeklődését, további információkat talál honlapunkon a Stratasys F770 3D nyomtatóról

Stratasys FDM additív gyártás a nápolyi tömegközlekedésben

Stratasys FDM additív gyártás a nápolyi tömegközlekedésben

A nápolyi trolibuszok állásideje 12 hónapról mindössze két hétre csökkent a Stratasys F900 ipari 3D nyomtatóval gyártott cserealkatrészek használatával. A projekt sikerén felbuzdulva tervezik az FDM additív gyártás kiterjesztését az egész olasz tömegközlekedési hálózatra.

A 3DnA mérnökvállalat célja az olaszországi tömegközlekedési eszközök karbantartásának és javításának megreformálása Stratasys FDM additív gyártás alkalmazásával. A cég által nemrégiben az Azienda Napoletana Mobilità (ANM), a nápolyi tömegközlekedési vállalat számára végzett munka rávilágított, hogy a pótalkatrészek igény szerinti 3D nyomtatása akár 95%-kal is csökkentheti a járművek leállását a hagyományos pótalkatrész gyártással összevetve.

A nápolyi trolibusz költséghatékony, fenntartható közlekedési módot biztosít az egész városban.
A nápolyi trolibusz költséghatékony, fenntartható közlekedési módot biztosít az egész városban.

Az ANM irányítja a teljes nápolyi tömegközlekedési hálózatot, köztük a város híres trolibuszait is. A vállalat nemrég azt tapasztalta, hogy a buszok áramszedői – azok a létfontosságú eszközök, amelyek a buszt összekötik a felsővezetékkel – közül sok eltört, vagy már nem használható. Működő áramszedő nélkül ezek a buszok működésképtelenné válnának, és fel kellene függeszteni a szolgáltatást.
A trolibuszflotta kora miatt az említett cserealkatrész már nem volt elérhető a piacon – ami nem csak a busz leállását jelentette, de az egész flottát veszélybe sodorta volna ismételt alkatrész-törések esetén. A probléma kezelésével előtérbe került a 3DnA additív gyártási szakértelme– nagyméretű, ipari Stratasys F900® 3D nyomtatója jelentette a megoldást az ANM számára.

„Az áramszedők hagyományos eljárásokkal történő gyártása akár 12 hónapot is igénybe vett volna. Ez hosszú leállást eredményezett volna a jármű számára, ami egyszerűen elképzelhetetlen” – magyarázza Alessandro Manzo, a 3DnA főigazgatója.

„A Stratasys F900-asunkkal két hét alatt legyártottuk és kiszállítottunk mintegy 20 darabot az áramszedő legkritikusabb alkatrészéből, lehetővé téve, hogy az ANM kiküszöbölje flottája leállásának további kockázatát, és megbízható tömegközlekedést biztosítson hárommillió nápolyi számára. Összességében ez a termelési rugalmasság rendkívül fontos az ANM számára, mivel most a tényleges igények alapján rendelhet alkatrészeket, nincs szükség nagy mennyiségű, költséges készlet raktározására.”

A teljes flottában alkalmazzák a 3D nyomtatott alkatrészeket

Mivel az eredeti áramszedő elavult, a 3DnA 3D szkennelés segítségével újratervezte az alkatrészt. Fontos, hogy kihasználva az additív gyártás által kínált geometriai szabadságot, a csapat képes volt úgy áttervezni az alkatrészt, hogy sérülés esetén az áramszedőnek csak egy kis alkatrészét kelljen kicserélni – ne az egész egységet, mint korábban.
Az új áramszedő központi része egy fémszerkezet, az F900 3D nyomtatót a külső burkolat előállításához használják, amely összeköti az áramszedőta felsővezetékekkel.

ULTEMTM 9085 alapanyagból, F900 berendezéssel 3D nyomtatott áramszedő felső burkolat
Ellenálló Stratasys ULTEM 9085 resin alapanyagból, F900 berendezéssel 3D nyomtatott áramszedő felső burkolat
Új 3D nyomtatott áramszedő csatlakoztatja a trolibuszt a felsővezetékhez
Új 3D nyomtatott áramszedő csatlakoztatja a trolibuszt a felsővezetékhez

„Az innovatív új kialakítást olyan jól fogadták, hogy az ANM úgy döntött, az áramszedőket a teljes trolibuszflottán lecseréli az új 3D nyomtatott változatra” – folytatja Manzo. „Ilyen nagy pontosságú alkatrészgyártási képességek nélkül ez nem lett volna lehetséges. A dolog szépsége, hogy az F900 nem csak az alkatrész nagyfokú pontosságát biztosítja, de ismételhetőség szempontjából is páratlan az iparban.”

A külső burkolatot Stratasys ULTEM 9085 resin alapanyagból nyomtatták, amely egyrészt biztosítja a mindennapi használathoz szükséges szerkezeti támogatást, másrészt megfelel a szükséges elektromos szigetelési szabványoknak is. Manzo hozzáteszi: „Az alkatrész nem vezeti a villamos energiát, ezért ennek az alapanyagnak a használata elengedhetetlen. Ráadásul az ULTEM 9085 resin három kulcsfontosságú feltételt is biztosít végfelhasználói szállítási alkalmazásaikhoz: kiváló hőállóság 153°C hőelhajlási hőmérséklettel, lángálló hőre lágyuló műanyag, és nagyon nagy szilárdsági arányt kínál.”

Terjeszkedés országszerte

A nápolyi sikeren felbuzdulva 3DnA a vezetősége úgy látja, ez katalizátorként fog hatni a szélesebb olasz közlekedési ágazat átalakítására.
„Hiszünk benne, hogy az additív gyártás válik a tömegközlekedési ágazat elsődleges pótalkatrész előállítási módszerévé.” – összegzi Manzo. „A kis darabszámú, igény szerinti gyártás költséghatékony, az iparág pedig megérett az átalakulásra, ahogy az ANM példája is mutatja. A projekt eredményeként máris előrehaladott tárgyalásokat folytatunk több olaszországi szállításirányítási vállalattal, hogy pótalkatrész szükségletüket ezzel a technológiával támogassuk.”

Itt talál bővebb információt a cikkben szereplő F900 3D nyomtatóról, és az ellenálló ULTEM™ 9085 resin alapanyagról.

Stratasys Fortus 450 3D nyomtatókkal erősít a Continental

A Continental Stratasys Fortus 450 3D nyomtatót alkalmaz
Stefan Kammann a Stratasys Fortus 450mc 3D nyomtat előtt az ADaM Competence Center-ben

A Continental Stratasys FDM additív gyártással erősíti termelési képességeit

A Continental AG, az autóipari technológiák egyik meghatározó vállalata már több, mint 20 éve sikerrel alkalmazza az additív gyártást. A németországi Karbenben található Additív Design és Gyártási Kompetencia Központja a teljes tervezési és a gyártási folyamatába integrálja a technológiát.

Házon belüli gyártási igényeire megoldásként, valamint hogy megfeleljen az ügyfelek elvárásainak, a Continental gyártási képességeinek megerősítéséhez befektetett egy Stratasys Fortus 450mc™ 3D nyomtatóba. A technológia lehetővé teszi az ULTEM™ 9085 resin alapanyagból készült tartós, nagy teljesítményű alkatrészek gyártását, az ABS-ESD7™ alapanyag pedig elérhetővé teszi a Continental számára ESD-kompatibilis szerelvények 3D nyomtatását is.

„A Fortus 450mc kiemelkedik portfóliónkban, mivel hozzáférhetővé teszi számunkra az olyan rendkívül speciális alapanyagokat, mint az ULTEM™ 9085 resin és az ABS-ESD7™, amelyek lehetővé teszik számunkra, hogy a termelőüzemben megfeleljünk a nagy igényeket támasztó gyártási alkalmazásoknak."
Stefan Kammann
Continental Mérnöki Szolgáltatások

A kihívás

• A termelési fennakadások megakadályozása érdekében gyorsan kell beszerezni a pótszerszámokat és -eszközöket, és testreszabott megoldásokra van szükség.
• Az elektronikus alkatrészekkel való fokozott munka azt jelenti, hogy elengedhetetlenek az ESD-kompatibilis szerszámok és gyártástámogató eszközök.

A megoldás

• A házon belül alkalmazott Stratasys FDM® additív gyártás növeli a termelés gyorsaságát, testreszabott, nagy teljesítményű eszközök és alkatrészek igény szerinti gyártásával.
• A Fortus 450mc 3D nyomtató lehetővé teszi ABS-ESD7 anyagból ESD-kompatibilis gyártástámogató eszközök gyors előállítást, így elkerülve az alkatrészek károsodását vagy a gyártósor megakadását érzékeny elektronikával való érintkezés esetén.
• A Fortus 450mc elérhetővé teszi az alkatrészek néhány órán belüli gyártását. Ez azt jelenti, hogy a Continental-nál beállíthatják, hogy a nyomtatási feladatok éjszaka fussanak, így a kész alkatrészeket már másnap reggel kézbe vehetik.

Stratasys Fortus450 3D nyomtatás a Continental-nál

Ismerje meg, hogyan illesztette be gyártási folyamataiba a Continental a Stratasys Fortus450 3D nyomtatót!

Töltse le 4 oldalas, magyar nyelvű esettanulmányunkat most!

Név:*

E-mail cím:*

Munkahely neve:

Telefonszám:*

Hozzájárulok ahhoz, hogy a VARINEX Zrt. hírlevelet, szakmai anyagokat, tájékoztatást küldjön az általam megadott elérhetőségre. A jelen adatkezelési hozzájárulás – amely önkéntes döntésen alapul – a hozzájárulásom visszavonásáig érvényes.

Elolvastam és megértettem az Adatkezelési tájékoztatóban foglaltakat.*

A *-gal jelölt mezők kitöltése kötelező!



Boeing minősítést kapott az Antero 800NA alapanyag

Boeing minősítést kapott az Antero 800NA alapanyag

A PEKK (poli-éter-keton-keton) alapú anyag fokozott kémiai és kifáradási ellenállóképességgel bír. Ez új lehetőséget kínál a Boeing számára polimer repülőgép alkatrészek gyártásában.

A Boeing, a világ egyik legnagyobb repülőgépgyártó vállalata minősítette és elfogadta a Stratasys által 3D nyomtatásra kínált Antero 800NA hőre lágyuló műanyagot – jelentette be a Stratasys. A minősítés azt jelenti, hogy ez a magas hőtűrésű alapanyag már alkalmazható a Boeing repülőgépek 3D nyomtatással történő alkatrészeinek közvetlen gyártásához, azaz ezek a darabok nem prototípusként funkcionálnak, hanem közvetlenül beépítésre kerülnek a repülőgépekbe.

 

A Boeing minősítette a Stratasys Antero 800NA alapanyagát, amely lehetővé teszi a magas hőmérsékletű anyag felhaszálását a vállalat repülőgépeinek alkatrészeinél

A PEKK alapú Antero 800NA polimert kifejezetten az ipari Stratasys FDM® 3D nyomtatóhoz fejlesztették ki. A Boeing kiadta a BMS8-444 specifikációt és az anyag átfogó kiértékelése után felvette a 800NA alapanyagot a Minősített Terméklistára (QPL). Ez a Stratasys első alapanyaga, amelyet a Boeing alkalmaz minősített kémiai ellenálló képességgel és kifáradási követelményekkel való megfelelőség tekintetében. 

 

Boeing repülőgép (Forrás: Boeing)

“A Boeing felismerte az Antero óriási előnyét azon alkalmazások tekintetében, ahol korábban nem lehetett 3D nyomtatást alkalmazni,” – mondta a Stratasys Aerospace alelnöke, Scott Sevcik. “Az additív gyártás óriási előnyökkel jár a repülőgépipari beszállítói láncok egyszerűsítésében mind az új alkatrészek esetében, mind a karbantartási, javítási és üzemeltetési alkatrészek tekintetében. A követelmények teljesítéséhez robusztus anyagokra van szükség a kihívást jelentő repülőgépipari előírások teljesítéséhez”

Az Antero családba tartozó 800NA – akárcsak az Antero 840CN03 – ESD védett alapanyag.
A Stratasys elérhetővé tette ezeket az alapanyagokat az F900 és Fortus 450mc 3D nyomtatóval rendelkező felhasználóknak is.

Tudjon meg többet a Stratasys Antero 800NA alapanyagról ITT!

Egyedi, gyors gyártás – 3D nyomtatás

Egyedi, gyors gyártás - 3D nyomtatás

Az egyedi, gyors gyártás iránti igény robbanásszerűen megnövekedett, a 3D nyomtatás egyre népszerűbbé válik a vállalkozók körében. Falk Györggyel, a VARINEX egyik tulajdonosával, Gábor Dénes-díjas mérnökkel a NEW technology magazin beszélt a piac aktuális helyzetéről.

A 3D nyomtatás nagyon népszerű lett az utóbbi időben, egyre több cég csatlakozott ehhez az iparághoz. Miben különböztök a többi szereplőtől?

Az elmúlt években a szektorban a hazai cégek sokat fejlődtek, ügyes kezdeményezések láttak napvilágot. Kellő alázattal válaszolva, abban különbözünk a többiektől, hogy sokkal több időnk volt tudást és tapasztalatot gyűjteni az elmúlt két évtizedben. Ügyfeleinknek örömmel segítünk függetlenül attól, hogy most ismerkednek a 3D nyomtatás világával, vagy egy széles spektrumú gyártástechnológiai optimalizáláshoz keresnek megoldást.

Abban van a legnagyobb gyakorlatunk, hogy a hagyományos gyártástechnológiák közé hatékonyan tudjuk beilleszteni a 3D nyomtatási eljárásokat. A VARINEX megoldásaiban a gyártás rendszerszintű megközelítése hozza a legnagyobb profitot, amelyben a 3D nyomtatás csak az egyik elem. Ebbe a folyamatba a segítségünkkel bármilyen tudásszinten be lehet csatlakozni, és azt látjuk, hogy minél előrébb tart valaki, annál nagyobb profitot tud a megoldásainkkal realizálni.

Jó érzéssel tölt el, hogy több olyan aktív ügyfelünk is van, akivel immár 20 éve dolgozunk együtt. Évtizedek óta tanítom is az additív technológiákat a BME kiváló kollégáival közösen, eddig több, mint 1000 diák fordult meg nálunk, a hazánkban egyedülálló ipari kapacitással rendelkező 3D nyomtatási gyárunkban.

3D nyomtatás - VARINEX Zrt.

Aktuális és nem kikerülhető kérdés a koronavírus hatása a 3D nyomtatás ágazatára. Eddig milyen következtetéseket vontatok le az eseményekből, milyen irányba mozdult el a 3D nyomtatás piaca?

Úgy látjuk, hogy a gyorsan előállított, egyedi igények szerint gyártott termékekre ugrásszerűen megnőtt a kereslet, ezért a 3D nyomtatás az egyik legmegfelelőbb megoldás a felmerülő kérdésekre. Ugyanakkor a megváltozott körülmények mindenkit új helyzet elé állítottak. A legtöbb ipari szereplő komoly kihívások elé néz, ezért a lehető legjobb döntéseket kell hozniuk fejlesztésük és termelésük optimalizálásában. Ebben a VARINEX most is megbízható partnerük lesz.

Még egy kérdés a koronavírusról. A VARINEX hogyan segít a bajbajutottakon ebben a nehéz helyzetben?

Voloncs Gyuri barátommal és cégtársammal az elmúlt közel 30 évben mindig igyekeztünk jó ügyeket támogatni lehetőségeinkhez mérten. Most is egyértelmű volt mindkettőnk számára, hogy segítenünk kell a koronavírus elleni harcban. Eddig közel 20 budapesti és vidéki kórházat és egészségügyi intézményt támogattunk 3D nyomtatott védőfelszerelésekkel.

Az egyik legfontosabb egy 3D nyomtatónál, hogy milyen anyagokkal képes dolgozni. Ti milyen gépekkel és milyen anyagokkal foglalkoztok?

A VARINEX a Stratasys ipari berendezéseivel foglalkozik. Évente több ezer modell nyomtatását vállaljuk szolgáltatásként és élvezzük a professzionális, ipari gépek innovációit. Ezek a berendezések évtizedes technológiai előnyben vannak, szabadalmakkal védett technológiával gyártanak és valóban műszaki alapanyagokat használnak az egyszerű ABS-től a speciális high-standard ULTEM™ 9085 és ULTEM™ 1010 resinig. A gyártósori jig-ek 3D nyomtatására a rendkívül erős és kopásálló új poliamid Diran alapanyag ajánlott, és egyes fém alkatrészek helyettesítésére kiválóan alkalmas az általunk forgalmazott Stratasys FDM szénszálas technológia.

Tudjon meg többet az FDM szénszálas Carbon Fiber technológiáról itt: varinex.hu/stratasys/cf 

Forrás: Némethi Botond/NEW technology magazin

Stratasys 3D nyomtatók kórházi alkalmazása a koronavírus ellen

A Párizsi Egyetemi Kórházat 60 Stratasys 3D nyomtató segíti a koronavírus ellen folytatott küzdelemben

A párizsi kórházi rendszer 60 Stratasys 3D nyomtatót telepít a COVID19 elleni küzdelemhez. Az F123 sorozatú 3D nyomtatókat 24 órán belül a kórházba szállították és telepítették.

A Párizsi Egyetemi Kórházban (L’Assistance Publique – Hôpitaux de Paris), amely Európa legnagyobb kórházi rendszere, 60 darab Stratasys 3D nyomtatót telepítettek a koronavírus ellen folytatott küzdelem támogatására. A megrendeléstől számított 24 órán belül kiszállított berendezések lehetővé teszik a francia kórházi rendszer számára, hogy orvosi eszközöket és alkatrészeket gyártson a helyszínen a felmerülő igények kielégítésére.

Stratasys F123 3D nyomtatók a Párizsi Egyetemi Kórházban
Stratasys F123 3D nyomtatók a Párizsi Egyetemi Kórházban (Fotó: 3Dprintingmedia.network)

A 60 darab F123 sorozatú 3D nyomtatót, amely a kórház egy 150 négyzetméteres létesítményben kapott helyet, a Stratasys franciaországi viszonteladója, a CADvision szállította. Az FDM technológiájú berendezéseket mindenféle alkatrész nyomtatásához használják, arcvédő pajzsoktól és maszkoktól kezdve, elektromos fecskendőszivattyúkon és intubációs berendezéseken át, légzőkészülék szelepekig bezárólag, hogy segítsenek enyhíteni a koronavírus járvány okozta nehézségeket.

A kórháznak a meglehetősen nagy volumenű 3D nyomtatási projekt kezelésében az orvosi ágazatban nagy tapasztalattal rendelkező 3D nyomtatási szolgáltató, a Bone3D segít: mérnököket biztosít, akik irányítják a Stratasys flotta telepítését, üzemeltetését és szervizelését. A kórház emellett elindított egy külön 3D nyomtatási platformot is (3dcovid.org), amely segít a párizsi és környékbeli egészségügyi dolgozók 3D nyomtatott eszközigényeinek villámgyors kielégítésében Franciaországnak a járvány által leginkább súlytott részén.

A koronavírus ellen folytatott küzdelem részeként Stratasys F123 3D nyomtatókat telepítenek a Párizsi Egyetemi Kórházban
Telepítés alatt a Stratasys F123 3D nyomtatók a Párizsi Egyetemi Kórházban (Fotó: Facebook.com/Stratasys)

3D nyomtatókkal biztosítják a COVID19 ellen szükséges felszereléseket

A Párizsi Egyetem és a Kering Csoport támogatásával megszerzett 3D nyomtatási erőforrások lehetővé teszik az egészségügyi intézmények széles skálája számára, hogy megoldja a felmerülő ellátási hiányokat, és biztosítsa a munkatársai védelméhez és a kórházi betegek kezeléséhez szükséges felszereléseket.

“A COVID19 elsöprő és súlyos jellege folyamatosan kihat a világ legnélkülözhetetlenebb berendezéseinek ellátási láncára”- mondta Andreas Langfeld, a Stratasys EMEA elnöke. „A 3D nyomtatási technológiának köszönhetően a Párizsi Egyetemi Kórháznak házon belül rendelkezésére áll a saját, gyors-reagálású ellátási lánca, így a termelést közvetlenül a szükséges helyre helyezve, azonnal biztosítani tudja a nélkülözhetetlen felszereléseket a frontvonalban küzdő, naponta emberéleteket mentő egészségügyi dolgozók számára.”

A Párizsi Egyetemi Kórház épülete
A Párizsi Egyetemi Kórház épülete (Fotó: 3Dprintingmedia.network)

A Stratasys más módon is támogatja a COVID19 elleni küzdelmet: partnerei segítségével ezerszámra állít elő és juttat el arcvédő pajzsokat az egészségügyben dolgozók számára. A vállalat azt mondta, hogy a múlt héten több mint 350 000 arcvédő eszköz iránti kérelmet kapott, és gyártópartnereket keres a sürgős igények kielégítésére.

Forrás: www.3dprintingmedia.network

Tudjon meg többet a cikkben említett Stratasys F123 sorozatú 3D nyomtatókról!

Autóipari folyamatok leegyszerűsítése additív gyártással

Autóipari folyamatok leegyszerűsítése additív gyártással

Az autóipari gyártási folyamatok leegyszerűsítése additív gyártással

A minőség és a gyártási teljesítmény ma kulcskérdés az autóipari termelésben. Számos újdonság jelenik meg, például az önvezető járművek és az intelligens autók, így nagy a nyomás a gyártókon és beszállítókon, hogy új gyártási technológiákra és szaktudásra támaszkodjanak a hatékony tervezés, költségkezelés és munkavégzés biztosítása érdekében.

A minőség és gyártás egyik kritikus fontosságú eleme – amely megérett az átalakításra – a gyártási segédeszközök (például befogó készülékek, ülékek, sablonok és mérőműszerek) köre. Ezek az eszközök – amelyeknek a fontosságát gyakran alábecsülik – segítenek a gyártóknak a termékek megbízható, megismételhető és olcsó előállításában. Ha additív gyártást (avagy 3D nyomtatást) használunk a befogó készülékek és ülékek előállításához, azzal nem csupán az átfutási időt csökkenthetjük, de a kisebb mértékű anyagfelhasználás jelentős költségmegtakarítást is eredményezhet.

Cikkünk az autóipari befogó készülékek és ülékek 3D nyomtatásának előnyeit tárgyalja a hagyományos gyártási módszerekkel szemben, valamint ideális alkalmazási lehetőségeit a gyártósorokon.

A befogó készülékek és ülékek additív gyártással történő előállításának előnyei

A gyártók hagyományosan CNC-megmunkálású vagy fröccsöntött befogó készülékekkel és ülékekkel dolgoznak, amelyeknek az elkészítése idő- és munkaigényes, megtérülésük előre nem garantálható. Az additív gyártással rövidebb idő alatt készíthetők új alkatrészek mérnöki minőségű alapanyagokból, CNC megmunkálás nélkül, így jelentős mértékű költségmegtakarítás érhető el az eszközök előállítása során.

A befogó készülékek és ülékek 3D nyomtatása a következő fő előnyökkel jár:

  • gyors piacra vitel: 3D nyomtatással gyorsabban és igény szerint állíthat elő befogó készülékeket és ülékeket. Az átfutási idő 70–90%-kal kevesebb a hagyományos gyártáshoz képest.
  • tervezési szabadság: a 3D nyomtatás az alapoktól, rétegenként építi fel az alkatrészeket, ami eltörli a gyártási szempontokat figyelembe vevő tervezés hagyományos korlátait, és számos új lehetőséget nyit a szerszámok konfigurálása terén. Amikor a mérnökök additív gyártásra terveznek, a furatok, kontúrok és összetett organikus szerkezetek többé nem jelentenek akadályt.
  • részegységek összevonása: az additív gyártásra jellemző tervezési szabadságnak köszönhetően azokat a segédeszközöket, amelyek korábban saját összeállítási időt igénylő részegységekből álltak össze, újra gyárthatók, hogy egyetlen alkatrészből valósuljanak meg, csökkentve ezzel a fenntartási költséget.
  • ergonómia: Az alkatrészek új irányelvek mentén történő tervezése azt is lehetővé teszi, hogy növelje a dolgozók kényelmét és az előállított segédeszközök ergonómiáját. Tervezés közben előtérbe helyezheti a funkciókat a gyárthatósági szempontokkal szemben. Ez nem jár további költségekkel, nem növeli meg a gyártási időt, de fokozza a segédeszközöket használó alkalmazottak biztonságát és kényelmét.
  • tömegcsökkentés: a gyártósoron dolgozó alkalmazottak kényelmét és biztonságát növelő másik előny a segédeszközök tömegének csökkentése. A 3D nyomtatás lehetővé teszi az erős, magas minőségű alapanyagok használatát, miközben az alkatrészek funkcionalitása nem csökken a fémből készült változatokkal szemben.
  • digitális készletezés: a 3D nyomtatók közvetlenül CAD-adatokból dolgoznak, így az új tervek gyorsan készíthetők el, és a meglévők könnyedén módosíthatók. Ha például változik a végső alkatrész mérete, és ezért új befogó készülékre van szükség, csak frissíteni kell a befogót megjelenítő CAD modell-t, meg kell rendelni az additív gyártással elkészített alkatrészt, és az új befogó készülék néhány napon belül már a gyártósoron lehet.

Additív gyártás az autóipari gyártósoron

Bár a „befogó készülékek” és az „ülékek” kifejezést gyakran használjuk együtt, egyértelmű különbségek vannak közöttük, és az alkalmazási területük is különböző. A befogó készülékek olyan testre szabott eszközök, amelyek egy művelet során egy alkatrész helyét és mozgását irányítják és felügyelik. Ezek gondoskodnak az ismételhetőségről és a pontosságról a termékek gyártása során. Ezzel szemben az ülékek olyan eszközök, amelyek egy alkatrészt egy rögzített helyzetben tartanak egy megmunkálási művelet vagy más ipari folyamat közben. Az ülékek gondoskodnak a változatlan minőségről, csökkentik a termelési költségeket, és lehetővé teszik, hogy a különböző alkatrészek a vonatkozó specifikációknak megfelelően készüljenek el.

Az összeszereléstől a minőségbiztosításon át a logisztikáig a „befogó készülékek és ülékek” teszik zökkenőmentessé az autóipari alkatrészek gyártási folyamatát. Néhány példa a befogó készülékek és ülékek 3D nyomtatásának autóiparon belüli alkalmazási területeire:

  • gyártás és összeszerelés: 3D nyomtatással készült eszközök a gyártási folyamat ezen lépésénél leggyakrabban arra szolgálnak, hogy irányítsák és megtartsák az eszközök és sínek pozícióját az alkatrészek marásakor és fúrásakor.
  • biztonság: gyakran a munkásokra marad az alkatrészek és berendezések biztonságának ellenőrzése, ezért fontos, hogy a befogó készülékek és ülékek a könnyebb használat érdekében könnyűek és ergonomikusak legyenek.
  • minőségbiztosítás és vizsgálat: 3D nyomtatás segítségével precíz, testre szabott eszközöket lehet készíteni, amelyek megfelelnek a minőségbiztosítással foglalkozó részlegek rögzítő és vizsgálóeszközökkel szemben támasztott szigorú elvárásainak. Az additív gyártáshoz kifejlesztett, hőre lágyuló, strapabíró műanyagok a végső vizsgálathoz is képesek sérülést nem okozó felületet biztosítani.
  • csomagolás és logisztika: a leggyakoribb alkalmazási terület, amellyel találkozhatunk a gyáron belüli szállítást elősegítő, testre szabott befogó készülékek előállítása. Az additív gyártás hőre lágyuló műanyagai strapabírók és hőállók és képesek ellenállni a szállítás során jelentkező terheléseknek, például a rezgéseknek, a nyomásnak és a nedvesség hatásának.

Az autóipar izgalmas és forradalmi időket él meg. Azok a gyártók jutnak versenyelőnyhöz, akik képesek a gépjárművek tervezésén túlmutató innovációkra, és készek arra, hogy átalakítsák a tervezési és gyártási folyamatok minden területét. Az additív gyártással létrehozott befogó készülékek és ülékek kulcsszerepet játszanak ebben a folyamatban, mivel hatékonyabbá teszik a munkavégzést, segítik a hibák kiküszöbölését, és lerövidítik a felülvizsgálathoz szükséges átfutási időket.

A 3D nyomtatás évek óta nélkülözhetetlen a gépjárművek prototípusának fejlesztési folyamatában, egyedi vagy testreszabott alkatrészek gyártásában.

Ismerje meg azon 5 kulcsfontosságú területet, ahol az innovatív 3D nyomtatás a tervezéstől a gyártásig átalakítja az autóipart! Töltse le magyar nyelvű kiadványunkat!


3D nyomtatás és profitorientált megközelítés szakértőinktől!

A VARINEX Zrt. 3D nyomtatás üzletága több, mint 25 éves tapasztalattal rendelkezik a 3D nyomtatás szolgáltatás, vagyis a bérnyomtatás területén. Az FDM és a PolyJet technológiákat napi szinten használó mérnök kollégák a legmagasabb színvonalon tudják teljesíteni az ügyfelek megrendeléseit. Az évi több tízezer különféle alkatrész bérnyomtatása során szerzett tapasztalat biztosítja az FDM és a PolyJet technológia közötti megfelelő választást az adott alkalmazási területen.

Projektindítás előtt lépjen kapcsolatba szakértő mérnök kollégáinkkal a 3dp@varinex.hu email címen!

Kéz a kézben: additív gyártás és a digitális folyamat

Kéz a kézben: additív gyártás és a digitális folyamat

A gyártók folyamatosan új módszereket keresnek tervezési feladataik optimalizálására, valamint arra, hogy egyszerűbbé, rugalmasabbá és agilisebbé válva lépést tarthassanak az ügyfelek testreszabási igényeivel. Ez kiterjed az olyan gyártási eszközökbe és gépekbe való befektetésekre, amelyek a vállalatok igényeinek megfelelően lettek kialakítva, és hozzájárulnak a szélesebb körű stratégiai célok eléréséhez.

A haladó gondolkodású gyártók előzetesen felkészülnek erre a trendre, és nyitnak a fejlődő technológiák felé – az egyik legfontosabb testreszabási lehetőséget pedig az additív gyártás és a digitális folyamat kombinálása jelenti.

A 3D nyomtatásnak is nevezett additív gyártás a fizikai tárgyak rétegenként történő előállítását jelenti. Az új alkatrészek és termékek létrehozása hagyományosan időigényes és költséges folyamat, a gyártórendszerek (gyártó- és szerelősorok) újra konfigurálásának szükségessége miatt. Az üzembehelyezési és átállási időhöz kapcsolódó költség pénzügyi hátrányt jelent, különösen az egyedi termékek esetében. Mindez nem fordulhat elő a testre szabott termékek mai, gyors ütemben fejlődő világában – az additív gyártás megoldást kínál erre a problémára.

A legelterjedtebb additív gyártási technológiák közül az FDM és a PolyJet gyártási technológia alkalmas alkatrészek, prototípusok gyors és költséghatékony előállítására. A PolyJet technológia a részletgazdagságáról ismert, az FDM technológia a tartós, végfelhasználásra kész alkatrészek gyártására helyezi a hangsúlyt. Ha az alkatrész esetében kulcsfontosságú a mechanikai szilárdság és tartósság, az FDM a legjobb választás.

Honnan tudhatja, hogy alkatrészeihez Önnek melyik a megfelelő technológia? >>> Tudjon meg mindent a PolyJet és az FDM technológiáról!  

A digitális folyamat kulcsfontosságú az additív gyártás ütemezése szempontjából

Az additív gyártás lehetővé teszi az új prototípusok, alkatrészek és termékek gyors előállítását, a gyártóberendezések nagy léptékű átállítása nélkül. A költségmegtakarítás jelentős lehet még az egyedi termékek esetében is – gondoljunk például egy gép meghibásodására, amikor egy helyszíni 3D nyomtatóval legyártható egy pótalkatrész. A bennük rejlő potenciál teljes kihasználásához érdemes összekapcsolni az additív gyártást és a digitális folyamatot. A fenti példában az IoT (dolgok internete) és az elemzés révén előzetesen felkészülhetünk a berendezés karbantartására, és proaktív intézkedéseket tehetünk. Ha a digitális raktárkészletből a szükséges pótalkatrész virtuális modelljét betápláljuk a 3D nyomtatóba, rövid idő alatt legyárthatjuk a cserealkatrészt, és elkerülhetjük a költséges leállásokat.

Az IoT kulcsfontosságú teljesítményadatokkal is képes szolgálni, amelyekkel zárt hurkú visszacsatolás hozható létre a terméktervezők számára. A valós termékhasználati adatokat a következő termékváltozatot elkészíteni szándékozó tervezők elérhetik a digitális folyamaton keresztül.

A generatív tervezés és a digitális folyamat

A mesterséges intelligencia (MI) átalakítja az iparágakat, a vállalatokat, és az azokban megjelenő szerepköröket is. A terméktervezési és mérnöki szerepkörökben dolgozókat MI-alapú generatív tervezőeszközökkel látják el, hogy kisebb tömegű, hatékonyabb jövőbeli termékváltozatokat hozhassanak létre.

Melyek az additív gyártásra való tervezés technikái?

Az alkalmazandó tervezési technika/technikák kiválasztásakor nagyon fontos átgondolni, hogy hogyan fogják használni az alkatrészt és milyen szerepet fog betölteni. A topológiaoptimalizálás és a generatív tervezés valójában gyakran kapcsolatban áll egymással. A generatív tervezés végső célja egy olyan terv megalkotása, amely jobban, gyorsabban és tömegcsökkentés mellett képes megfelelni a teljesítménykövetelményeknek, számítási módszerek és a meglévő erőforrások használatával. A topológiaoptimalizálás nem más, mint egy bevált generatív tervezési módszer, amely az anyageloszlás optimalizálására fókuszál, megbízható numerikus módszerek használatával. A topológiaoptimalizálással kapott optimalizált alakokat sok esetben nem lehet hagyományos eljárásokkal legyártani.

>>> Ismerje meg az alkotás jövőjét jelentő generatív tervezési technológiát magyar nyelvű összefoglaló kiadványunkból!

Minden gyártási folyamatnak megvan a maga tervezési technikája: a gépi megmunkálásra váró darabokat máshogyan tervezzük, mint a 3D nyomtatással előállított elemeket. Az additív gyártás egyedi tervezési szabályokkal és eszközökkel dolgozik, amelyekkel optimalizált, 3D nyomtatásra kész terveket lehet létrehozni. Ezeket a tervezési megoldásokat azzal a céllal fejlesztettek ki, hogy a lehető legnagyobb mértékben optimalizálja az alkatrész költségét, megbízhatóságát és más, a termék életciklusára vonatkozó szempontokat.

Az additív gyártás rétegenkénti anyagnyomtatással kelti életre ezeket az innovatív, generatív terveket. Az ilyen optimalizált terméktervekkel jelentősen csökkenthető a hulladéktermelés, a felhasznált anyagok mennyisége és a termékek tömege, ami nagy jelentőséggel bír a termékelőállítási költségeire és a gyakorlati teljesítményre nézve.

Az additív gyártás és a generatív tervezés kombinálásával a prototípuskészítés általános költségei is jelentősen csökkenthetők. Helyszíni 3D nyomtató használatával a terméktervezők gyorsan legyárthatnak egy-egy generatív tervezéssel optimalizált prototípust. A gyors prototípuskészítés hatással van a folyamat későbbi lépéseire is. Lehetővé teszi, hogy a gyártók minden korábbinál gyorsabban piacra vihessék a termékeiket, és megfelelhessenek az egyre rövidülő átfutási idők követelményeinek.

A gyártóknak additív gyártási stratégiára lesz szükségük, hogy lépést tarthassanak a tömeges testreszabási trendekkel és a versenyhelyzet kihívásaival. A digitális tervezési folyamattal kombinált additív gyártás lehetőséget biztosít az innovatív technológiák elterjedésére, és képes megkönnyíteni a különféle szerepkörök együttműködését. Az additív gyártás fizikai tekintetben forradalmasítja a gyártósorokat, míg a digitális folyamat képes lesz az összes műveletre vonatkozóan kiterjeszteni annak széleskörű hatását.

FDM és PolyJet technológia a 3D nyomtatás úttörőitől

Az FDM technológiát feltaláló család tagjának lenni azt jelenti, hogy a Stratasys kutatás-fejlesztés iránti erős elkötelezettség támogat minket. A VARINEX Zrt. 25 éves tapasztalattal rendelkezik a 3D nyomtatás szolgáltatás, vagyis a bérnyomtatás területén. Az FDM és a PolyJet technológiákat napi szinten használó mérnök kollégák a legmagasabb színvonalon tudják teljesíteni az ügyfelek megrendeléseit. Az évi több tízezer különféle alkatrész bérnyomtatása során szerzett tapasztalat biztosítja az FDM és a PolyJet technológia közötti megfelelő választást az adott alkalmazási területen.

Projektindítás előtt lépjen kapcsolatba a szakértő mérnök kollégákkal a 3dp@varinex.hu email címen!

Az FDM és a PolyJet: a professzionális 3D nyomtatási technológiák

Az FDM és a PolyJet: a professzionális 3D nyomtatási technológiák

Választások és döntések. Az életben folyamatosan azt tapasztaljuk, hogy választanunk kell a lehetséges megoldások között. Nincs ez másképp a 3D nyomtatás világában sem. Mind a Fused Deposition Modeling (FDM) és PolyJet technológia is rendelkezik egyedi jellemzőkkel és különleges előnyökkel.

Honnan tudhatja, hogy alkatrészeihez Önnek melyik a megfelelő technológia? A lehetőségek jobb megértéséhez fontos ismerni a folyamatok menetét.

Az FDM hőre lágyuló polimer alapanyagot használ, amelyet a gép megolvaszt, és az olvadékot folyamatosan, precízen helyezi el, ezt nevezzük extrudálásnak. Az extrudálás után az anyag azonnal megszilárdul.

A PolyJet-folyamat hasonlít a hagyományos tintasugaras nyomtatáshoz, csak nem egyrétegben helyezi el a „cseppeket”, hanem rétegenként egymás fölé. Az elhelyezett cseppek egy különleges polimer anyagból vannak, melyek UV fény hatására megszilárdulnak. Ezeket hívjuk fotopolimereknek. Miután létrejön egy réteg, a gép további rétegeket hoz létre és addig ismétli a folyamatot, amíg az alkatrész el nem készül.

Az FDM és PolyJet gyártástechnológia során feldolgozott alapanyagok eltérők, így az elkészült termékek tulajdonságai is különbözőek lesznek.  Íme néhány dolog, amit érdemes megfontolni a megfelelő technológia kiválasztásakor:

Alkalmazási terület – mire fogják használni az alkatrészt?

A PolyJet technológiával élethű, színes alkatrészeket lehet létrehozni, ezért nagyszerű választás koncepciómodellekhez.

Míg a PolyJet a részletgazdagságáról ismert, az FDM a tartós, végfelhasználásra kész alkatrészek gyártására helyezi a hangsúlyt. Ha az alkatrész esetében kulcsfontosságú a mechanikai szilárdság és tartósság, az FDM a legjobb választás.

Alapanyag

Ha az alkatrésznél különösen fontos a részletgazdagság, akkor PolyJet technológiát érdemes választani. Segítségével akár a legbonyolultabb színes textúrák is elkészíthetők. Különböző anyagtulajdonságú elemekre van szükség egy elemen belül?  A PolyJet technológiának köszönhetően különféle rugalmasságú alkatrészek nyomtatására is lehetőség van, a gumiszerű alkatrészektől egészen a kemény műanyagokig.

Fused Deposition Modeling (FDM) technológia esetén széleskörű a felhasználható alapanyagok választéka. Az elkészült termék robosztus, és ellenáll a szélsőséges körülményeknek és vegyi anyagoknak is.

Felületi minőség – mennyire fontos az elkészült darabok felületi minősége?

Általában a felhasználás módja határozza meg. A koncepciómodellek és néhány prototípus esetén alapvető fontosságú lehet a felületkezelés és az esztétika. A Varinex Zrt. munkatársai 25 év tapasztalata alapján mindig az optimális megoldást fogják az ügyfeleknek javasolni!

Bár az FDM nem biztosít olyan részletgazdagságot, mint a PolyJet, ezzel a technológiával is létre lehet hozni komplex geometriájú alkatrészeket és bonyolult részegységeket. Az FDM-folyamattal létrehozott alkatrészeken a rétegek ugyan láthatók, de ezek nem befolyásolják az alkatrész szilárdságát és funkcióit.

Alkatrészméret

A technológia kiválasztásakor az alkatrész méretét is figyelembe kell venni. A PolyJet és az FDM hasonló maximális munkateret kínálnak: a PolyJet-alkatrészek maximális mérete 998 x 797 x 497 mm, az FDM-alkatrészek maximális mérete pedig 914 x 609 x 914 mm lehet.

Az FDM technológiával tetszőleges méretű alkatrészeket is létre lehet hozni. Ha az alkatrész mérete meghaladja a fenti megadottat, az alkatrészt fel lehet darabolni, és az egyes darabokat külön is el lehet készíteni. Ezeket később össze lehet illeszteni, az elkészült termék olyan szilárdságú és működésű lesz, mintha egyetlen alkatrész lenne.

Mindkét technológiának megvannak az előnyei. Végső soron az alkatrész felhasználási módja fogja meghatározni az alkalmazható 3D nyomtatási eljárást. Ha nagy felbontású, rendkívül finom alkatrészekre van szüksége, a PolyJet remek választás. Ha pedig a tartósság és a termék szélsőséges körülmények közötti működése fontos, érdemes az FDM-et előnyben részesíteni!

5 érv a Stratasys PolyJet technológiája mellett a prototípus gyártásban – Töltse le magyar nyelvű ismertetőnket, amelyből megtudhatja, hogy miért érdemes a PolyJet 3D nyomtatási technológiát választani a prototípus-készítéshez?

Tervezési szempontok FDM-nyomtatáshoz – Töltse le tervezési útmutatónkat, amelyből megismerheti az FDM technológiai eljárásra vonatkozó tervezési szempontokat!


FDM és PolyJet technológia a 3D nyomtatás úttörőitől

Az FDM technológiát feltaláló család tagjának lenni azt jelenti, hogy a Stratasys kutatás-fejlesztés iránti erős elkötelezettség támogat minket. A VARINEX Zrt. 25 éves tapasztalattal rendelkezik a 3D nyomtatás szolgáltatás, vagyis a bérnyomtatás területén. Az FDM és a PolyJet technológiákat napi szinten használó mérnök kollégák a legmagasabb színvonalon tudják teljesíteni az ügyfelek megrendeléseit. Az évi több tízezer különféle alkatrész bérnyomtatása során szerzett tapasztalat biztosítja az FDM és a PolyJet technológia közötti megfelelő választást az adott alkalmazási területen.

Projektindítás előtt lépjen kapcsolatba a szakértő mérnök kollégákkal a 3dp@varinex.hu email címen!

7 kérdés 3D nyomtatás előtt

7 kérdés 3D nyomtatás előtt - technológia és az alapanyag kiválasztása

Manapság számtalan, különféle 3D nyomtatási technológia és alapanyag közül választhat, és az eljárások száma idővel csak nőni fog. Fémnyomtatás, műanyag alapanyagból dolgozó lézerszinterezés, FDM és PolyJet technológia – és a lista folyamatosan bővül, az ipar által elfogadott eljárások sorában.

A dinamikusan változó additív gyártási piacon gyakran nehéz eligazodni, különösen akkor, ha még csak most ismerkedik a technológiával. A Stratasys-magyarországi partnerénél, a VARINEX Zrt. 3D nyomtatás üzletágnál a projekt- és alkalmazásmérnökein felmérik az Ön valós igényeit, hogy a leghatékonyabb technológiát és alapanyagot használhassa egy adott feladat megoldásához.

Számos ígéret és valótlan információ található az interneten, különféle 3D nyomtatási megoldások kapcsán, de fontos, hogy egy stabil és egy több, mint két évtizede a 3D nyomtatással foglalkozó magyarországi vállalattól kapjon segítséget, hogy eligazodjon ezen információ között.

Összeállítottunk egy listát, hogy segítsünk Önnek kiválasztani a megfelelő technológiákat és alapanyagokat:

Alkalmazás – Mi a termék, alkatrész felhasználási célja? Előfordulhat, hogy kisebb mennyiségben komplex terméket, alkatrészt kell gyártania, amihez erős anyagok, méretpontosság és ismételhetőség szükséges. A fogyóeszköznek tekinthető, precíziós öntéshez használt minták egyszer használatosak, és a felhasználás során ki kell égetni őket az öntőszerszámból.

Funkció – Mire szolgál az alkatrész? Lehet, hogy a koncepció jóváhagyására szolgál, így csak megjelenésében kell hasonlítania a végleges termékhez, alkatrészhez. Amennyiben funkcionális alkatrész elkészítése a cél, amely mechanikailag ellenálló, magasabb minőségű elvárásoknak is megfelelő alapanyagból és magasabb technológiai színvonalat kínáló berendezéssel kell gyártanunk.

A Stratasys technológiáival az ismétlési pontosság, a magasabb minőségi elvárásoknak megfelelő alapanyagok is rendelkezésre állnak.

Stabilitás – Hol használják majd az alkatrészt? Ha például magas hőmérsékleten is meg kell őriznie a teherbírását, illetve alakját, a Stratasys mérnöki és magas minőségi elvárásoknak megfelelő alapanyagaiból tudunk megoldást kínálni Önnek.

Kültéri használatra is alkalmasnak kell lennie? Ebben az esetben UV-álló alapanyagra lesz szüksége. ESD vagyis vezetőképes alapanyagra van szüksége? Az ABS-ESD7 alapanyagunkat tudjuk ajánlani.  Érintkezni fog az alkatrész az emberi testtel? Akkor biokompatibilis alapanyagot kell hozzá használni. ABS M30-i és a PC ISO alapanyagok jelentik a megoldást.

Tartósság – Mi az alkatrész elvárt élettartama? Fontos figyelembe venni a gyártási ciklusok számát és az alkalmazás időtartamát is. Például az öntőformák vagy a gyártószerszámok ciklusok százainak és hosszan tartó súrlódásnak vannak kitéve, de a prototípus-készítéshez alig egy hétig kell kitartaniuk. Néhány 3D nyomtatáshoz használt anyag csak nagyon rövid ideig működik kifogástalanul, addig a Stratasys által kínált alapanyagok akár évekig is képesek megőrizni mechanikai tulajdonságaikat.

Esztétika – Milyen legyen az alkatrész megjelenése és tapintása? A PolyJet technológiával azonnal sima felületű, utómunkát nem igénylő alkatrészek állíthatók elő, de ezek nem minden alkalmazásra megfelelőek. A hőre lágyuló műanyagok és műanyagporok feldolgozási folyamataival, például a lézerszinterezéssel (LS) és a Fused Deposition Modelinggel (FDM), erősebb és tartósabb alkatrészek készíthetők, de ezek a felhasználó elvárásai alapján további felületkezelésre szorulhatnak. A Stratasys által kínált porfólióban minden ügyfelünk számára megtaláljuk az ideális megoldást.

Gazdaságosság – Mekkora a költségvetés és mennyi idő áll rendelkezésre? Ha előre meghatározott költségvetéssel dolgozik, és egy bizonyos alkatrészből X mennyiségre van szüksége, a döntéshozatalnál az ár nagyobb súllyal esik latba, mint az érték. A gyorsaság és a minőség eddig fordítottan arányos volt egymással – a gyártás gyorsítása a minőség romlásához vezetett.  A Stratasys megoldásaival a bevezetési idő és a költségek csökkentése lehetséges anélkül, hogy lemondanánk a legkiválóbb minőségről.

Prioritások – Mi a legfontosabb tényező a döntéshozatalban? Gondolja át az elsődleges célkitűzést és a végső projektcélokat és ez alapján kell kiválasztani a 3D nyomtatási technológiák és alapanyagok körét.

Az alkalmazásának megfelelő additív gyártási technológia és anyag kiválasztása kulcsfontosságú az alkatrész teljesítménye és az eredmények szempontjából. Rendkívül fontos, hogy ismerje az egyes technológiák és alapanyagok előnyeit.


5 érv a Stratasys PolyJet technológiája mellett a prototípus gyártásban – Töltse le magyar nyelvű ismertetőnket, amelyből megtudhatja, hogy miért érdemes a PolyJet 3D nyomtatási technológiát választani a prototípus-készítéshez?

Tervezési szempontok FDM-nyomtatáshoz – Töltse le tervezési útmutatónkat, amelyből megismerheti az FDM technológiai eljárásra vonatkozó tervezési szempontokat!


A VARINEX Zrt. 25 éve szolgáltat 3D nyomtatást és kínál profitorientált megközelítést. Projektindítás előtt lépjen kapcsolatba szakértő mérnök kollégánkkal a 3dp@varinex.hu email címen.

VARINEX Zrt. 3D nyomtatás üzletág feliratkozás hírlevélre

Szuperautó 3d nyomtatási technológiával

Szuperautó 3D nyomtatási technológiával

Szuperautó 3D nyomtatási technológiával

Szuperautó 3D nyomtatási technológiával – a gyors, hatékony, ipari szintű additív gyártás áttörést hozott

A Briggs Automotive Company a Stratasys FDM 3D nyomtatási technológiáját használja egy légbeszívó prototípusának elkészítéséhez.

A Briggs Automotive Company (BAC) a Stratasys FDM technológiájával gyártotta le a légbeszívó rendszer működő prototípusát.

A Briggs Automotive Company (BAC) a Stratasys Fused Deposition Modeling (FDM) technológiájával gyártotta le a légbeszívó rendszer működő prototípusát a Mono R szuperautóhoz.

A 3D nyomtatással a BAC-nek sikerült a két hetes munkafolyamatot mindössze néhány órásra rövidítenie, így hamarabb be tudta szerelni a légszűrőházat, és megkezdhette annak ellenőrzését, hogy a terv a közutakon is működőképesnek bizonyul-e.

A BAC Mono R nagyjából 270 km/h-s végsebességre képes, teljesítménye meghaladja a 340 féklóerőt (bhp), tömegarányos teljesítménye pedig eléri a 612 féklóerőt tonnánként. Azáltal, hogy több oxigént képes eljuttatni az égéstérbe, az autó légszűrőháza kulcsfontosságú szerepet játszik abban, hogy az autó ilyen sebesség és teljesítmény elérésére lehet képes. Működés közben az alkatrész jellemzően 100 °C feletti hőmérsékletnek van kitéve, ezért a végterméknek teljes egészében szénszálas anyagból kell készülnie.

3D nyomtatással készült működőképes légbeszívó tesztelése a Mono R szuperautóval a közúti teljesítmény javítása érdekében
3D nyomtatással készült működőképes légbeszívó tesztelése a Mono R szuperautóval a közúti teljesítmény javítása érdekében.

A BAC csapata a Stratasys F900 Production 3D nyomtatóval kinyomtatta a légszűrőház prototípusát a cég szénszálakkal erősített, hőre lágyuló Nylon 12CF alapanyagából, amely akár 140 °C-os hőmérsékletnek is képes ellenállni. Ezzel a megoldással a vállalat mindössze néhány napon belül el tudta végezni a teljesítményteszteket, és biztos lehetett benne, hogy ha szükséges, még a hét vége előtt egy újabb változatot is össze tud állítani. A hagyományos prototípus-készítési módszerek alkalmazása esetén az esetleges tervmódosítások további két hetes várakozást eredményeztek volna.

„A gyors, hatékony, ipari szintű additív gyártás áttörést hozott a fejlesztési folyamatban – állapította meg Ian Briggs, a BAC tervezési igazgatója. – 3D nyomtatással órák alatt elkészült a légszűrőház pontos prototípusa, amelyet azonnal beépíthettünk az autóba, és megkezdhettük a tesztelést. Így sokkal hamarabb el tudtunk jutni a fejlesztéstől a gyártásig. A prototípus teljesítménye nagyon közel állt az öntőformában készült, szénszállal megerősített műanyagéhoz, és könnyen megállta a helyét a tesztpályán. Ez csak a kezdet volt a BAC csapata számára. A tervezői csapat a jövőben is szeretne élni az additív gyártás előnyeivel, hogy újabb és újabb korlátokat törhessünk át.”

Forrás: Todd Jones / Stratasys blog

A cikk a techmonitor.hu oldalán jelent meg.

3D nyomtatott befogó készülékek és ülékek

3D nyomtatott befogó készülékek és ülékek

3D nyomtatással készült befogó készülékek és ülékek: egy hatékony gyártási megoldás

A befogó készülékek és ülékek kulcsfontosságú szerepet játszanak a gyártásban. A befogó készülékek olyan egyedileg tervezett és legyártott szerszámok, amelyek egy művelet során a munkadarabok mozgását szabályozzák, az ülékek pedig az ipari folyamat végrehajtása közben egy adott helyen rögzítik a munkadarabokat. A befogó készülékek és ülékek a megbízható, ismétlődő tevékenységekből felépülő gyártás alappillérei.

A gyors és emberi beavatkozást szinte nem is igénylő képességeknek köszönhetően a 3D nyomtatás (más néven az additív gyártás) hatékony megoldást kínál a befogó készülékek és ülékek előállítására. A 3D nyomtatáshoz használt gyártási segédeszközök csökkentik az átfutási időt, költséghatékonyak miközben növelik a teljesítményt és a gyártási hatékonyság is.

3D nyomtatott gyártósori eszköz
3D nyomtatott autóipari gyártósori eszköz
3D nyomtatott autóipari jig


Gyorsabb gyártás

A 3D nyomtatás nagyszerűsége többek között a rövidebb átfutási időben rejlik – egyes alkatrészeket akár néhány óra leforgása alatt le lehet gyártani. A befogó készülékek és ülékek első darabjainak elkészítése esetenként kritikus jelentőséggel bírhat, amely 3D nyomtatással minden eddiginél gyorsabban végrehajtható. A 3D nyomtatással készült befogó készülékek és ülékek előállításához elegendő egy digitális fájl, és nincs szükség tényleges szerszámkészítésre, így azok igény szerint legyárthatók. A CAD-fájl bármikor módosítható, majd a nyomtatás néhány nap alatt újból elvégezhető.

Költségcsökkentés

A rövid átfutási időnek, az alkatrészek összevonásának és az emberi beavatkozást nélkülöző ipari 3D nyomtatóval történő gyártásnak köszönhetően a befogókészülékek és ülékek ipari 3D nyomtatással történő előállítása költséghatékony megoldás. A 3D nyomtatással csökkenthető az anyagveszteség, valamint a készletezéssel és tárolással kapcsolatos kiadások.

Nagyobb teljesítmény

A 3D nyomtatással készült befogó készülékek és ülékek esetében az ergonómiai fejlesztések a gyártott szerszám költségét nem befolyásolják, de növelik a gyártási hatékonyságot. A CAD-fájlok az egyes nyomtatások előtt egyszerűen módosíthatók, így a szerszámok és segédeszközök zökkenőmentesen fejleszthetők és testreszabhatók. Az additív gyártással elérhető tervezési szabadságnak köszönhetően olyan geometriák is kialakíthatók, amelyekkel javul a szerszámok kezelhetősége és használhatósága, így kényelmesebb a munkavégzés. E befogó készülékeknek és ülékeknek köszönhetően tehát további költségek nélkül növelhető az alkalmazotti hatékonyság és biztonság.

Tervezési szabadság

A gyárthatósági célok mentén tervezett, megmunkálással és egyéb hagyományos gyártási eljárásokkal csak nehézkesen előállítható, összetett befogó készülékek és ülékek a STRATASYS ipari 3D nyomtatási technológiák révén jobb ár/érték aránnyal állíthatók elő. Az additív gyártás biztosította tervezési szabadságnak köszönhetően eltűntek a hagyományos gyártási megoldások korlátai, ezzel új lehetőségek nyíltak meg a szerszám-konfigurációkban. Mivel ezzel a technológiával összetettebb tervek is kezelhetők, a korábban több részegységből elkészített szerszámok mostantól akár egyetlen egységként is gyárthatók és megvalósíthatók.

A részegységek összevonásával a szerszámok tömege is csökkenthető, így kényelmesebb lehet a munkavégzés. A 3D nyomtatási folyamatokban használt nagy teherbírású műanyagok kiváló alternatívát jelentenek a hagyományosan használt fémekkel szemben. A 3D nyomtatással készült könnyű befogó készülékek és ülékek ugyanolyan vagy jobb képességeket kínálnak, és ráadásul egyszerűbben használhatók.

A hatékony megoldás

A 3D nyomtatással készült befogó készülékek és ülékek használatából eredő előrelépés hatalmas előnyt jelenthet az Ön cége számára is.

A Stratasys magyarországi partnereként a professzionális szolgáltatásokért felelős csapatunk segít feltárni annak lehetőségeit, hogy a 3D nyomtatással készült befogó készülékek és ülékek alkalmazásával hogyan optimalizálhatja cége működését. Ajánlatkérésért keresse kollégáinkat!

Ha további információkra kíváncsi a 3D nyomtatással készült befogó készülékek és ülékek előnyeivel, illetve azzal kapcsolatban, hogyan növelheti a gyártási szakértelmet ezzel a forradalmi technológiával, töltse le tanulmányunkat!

Egy 3D nyomtató, ami termelésre és gyártásra is kész?

Egy 3D nyomtató, ami termelésre és gyártásra is kész?

Termelésre kész? Több, mint egy divatos hívószó!

Sokan rajongunk a 3D nyomtatásért, de sokszor nehéz eldönteni, hogy ezzel a 30 éve töretlenül fejlődő és változó technológiával kapcsolatban melyek a valós, és melyek a túlzó állítások. Manapság leggyakrabban a „termelésre kész” hívószóval találkozhatunk. De mit is jelent ez valójában?

A 3D nyomtatási technológiát már három évtizede használják prototípusok készítésére. De a 30-ból jó 20 év során a korai alkalmazók – elsősorban a járműiparban – hogy eleget tehessenek a gyártási igényeknek, egyre nagyobb elvárásokat támasztottak egyes 3D nyomtatási technológiákkal szemben.

A „gyártásra készség” népszerűségét alapvetően két tényező motiválhatja. Az első a befektetés. Számos, komoly háttérrel rendelkező vállalat lép be az iparágba azért, hogy a gyártási igények kielégítése érdekében egy új technológiát vagy egy már meglévő technológia egy új változatát hozza létre. A másik tényező a technológiai érettség. A Stratasys azon dolgozik, hogy finomítsa a gyártásban érdekelt felhasználóknak kínált technológiát. A repülőgépbelsők kialakításához készült F900mc Aircraft Interiors Solution (AIS) megoldás formájában az iparág egyedülálló ismétlési pontossággal és megbízhatósággal rendelkező additív gyártási eljárása jött létre.

De hogyan teljesít a Stratasys technológia más iparági szereplők „gyártásra kész” technológiáihoz képest? 

Az elmúlt hónapban a 3Dprint.com egy ötrészes sorozatot tett közzé, amely pontosan ezt a kérdést vizsgálja. A sorozat címe „Az additív gyártási eljárások változékonysága” (Variability of Additive Manufacturing Processes), a szerző Todd Grimm.  A sorozat hat technológiát hasonlít össze, köztük a Stratasys F900mc AIS FDM-technológiát, valamint az MJF, az SLA, az SLS és a CLIP technológiát, továbbá egy márkafüggetlen FFF-folyamatot – a fő mérce a megismételhetőség volt. A mechanikus tulajdonságokat, a geometriai pontosságot és a precizitást (megismételhetőséget) statisztikai módszerekkel értékelték, szemben a korábbi, más és más eredményekkel végződő tanulmányokkal. A tesztelést függetlenül, robusztus és következetes módszertannal hajtották végre.

Ami a mechanikai tulajdonságokat illeti, az FDM, az MJF és az SLA is meglehetősen jól teljesített: a szakítószilárdság és a rugalmassági modulus variációs együtthatói (CoV) az 1–4%-os tartományon belül voltak.  Az SLS, a CLIP és a márkafüggetlen FFF már nem teljesített ilyen jól. Különösen a márkafüggetlen FFF z tengelyi rugalmassági modulusának CoV-értéke volt elképesztő (54%-os), a tulajdonságok ebben az esetben tehát gyakorlatilag kiszámíthatatlanok.  A Stratasys FDM technológiájának 1,8%-os szórásértékével összehasonlítva egyértelmű, hogy nem minden FDM/FFF, extrudálással működő gyártási technológia tekinthető egyenlőnek a felhasználók szempontjából.

Ami a méreteket illeti, számos kis és nagy léptékű mérést végeztek annak érdekében, hogy a pozitív és negatív alaksajátosságokat jellemezhessék. A CLIP technológia az általa kínált alacsony nyomtatási volumen miatt sajnos nem került be a tanulmány ezen részébe. A márkafüggetlen FFF technológiával készült vizsgálati alkatrészeket a deformálódások csökkentése érdekében a nyomtatás után fel is kellett melegíteni, így azonban egyes méréseket nem lehetett elvégezni.

Az adatokból jól látható, hogy a különböző technológiák különböző szempontokból teljesítettek jól. Érdekes módon az SLS és a márkafüggetlen FFF technológia remek alaksajátosság-pontosságot biztosít, a nagymértékű szórás azonban azt mutatja, hogy ezek a technológiák pontosak ugyan, de nem precízek. Ezzel szemben az SLA rendkívül magas precizitást és konzisztens eredményeket biztosít, az alaksajátosságok azonban viszonylag pontatlanok. Grimm ezt következőképp összegezte: „Az MJF-nél egyszerre hiányzott a pontosság és a precizitás. A pontosság és a precizitás legjobb kombinációját pedig az FDM biztosította.”

A 3D nyomtatás rengeteget fejlődött az idők során. Bár a technológiák mindegyike továbbra is a „sorozatgyártási képesség” elérésére törekszik, az újdonságok és a régóta megbízhatóan teljesítők közötti különbségek egyértelműek, hiszen a Stratasys évről évre az ügyfelekkel szorosan együttműködve fejleszti termékeit. Ez nehéz és időigényes munka, de „a tanulmány bemutatta, hogy a mechanikai tulajdonságok és a geometriai méretek szórása terén az FDM technológia jár az élen a gyártásra készségért folytatott versenyben.”

Ebben az esetben nem csupán egy múló divatról van szó. Felkészült a „gyártásra kész” technológiákra és a következő lépésre?

Ismerje meg és töltse le a Stratasys megbízásából készült, angol nyelvű „Az additív gyártási eljárások változékonysága” című tanulmányt!

Forrás: Bartt
Stoltman / Stratasys blog


A VARINEX Zrt. 25 éve szolgáltat 3D nyomtatást és kínál profitorientált megközelítést. Projektindítás előtt lépjen kapcsolatba szakértő mérnök kollégánkkal a 3dp@varinex.hu email címen.





VARINEX Zrt. 3D nyomtatás üzletág feliratkozás hírlevélre



Alkatrészek igény szerint – FDM technológia

Alkatrészek igény szerint – FDM technológia

Mi az az FDM technológia?

Az FDM eljárás a 3D nyomtatással történő gyártás tervezési szabadságát kínálja, emellett felgyorsítja a fejlesztési és gyártási folyamatokat. Lehetővé teszi a nagy szilárdságú, hőre lágyuló műanyagok felhasználását már a prototípusok készítésénél is.

Olyan nagy szilárdságú, mérnöki felhasználású alapanyagokat is alkalmazhat, mint a polikarbonát és az ULTEM™ 9085 resin hőre lágyuló műanyagok.

Az FDM technológiával hőálló és vegyi anyagoknak ellenálló, kiemelkedő szilárdság–tömeg aránnyal rendelkező alkatrészek és működőképes prototípusok is készíthetők.

Hogyan működik az FDM technológia?

A Fused Deposition Modeling (FDM) az egyik legszélesebb körben alkalmazott 3D nyomtatási eljárás napjainkban, amelynek során megolvasztott műanyagot oszlatnak szét a nyomtatási felületen vékony rétegekben. Az FFF (Fused Filament Fabrication) néven is ismert 3D nyomtatási eljárás azonos alapokon nyugszik, mint az FDM eljárás, azonban az FDM technológia a magas hőmérsékletű, zárt munkatér és a több, mint 30 éves fejlesztési munka eredményeként olyan nagyteljesítményű műanyagok nyomtatására is alkalmas, amelyre az FFF technológia nem.

Az FDM gyártási technológiát széles körben használják a repülőgépiparban, a közlekedési iparágban és különböző ipari alkalmazásokban.

Tudjon meg többet az FDM technológia működéséről!

Töltse le tervezési útmutatónkat, amelyből megismerheti az FDM technológiai eljárásra vonatkozó tervezési szempontokat!

Az FDM technológia lehetővé teszi olyan mérnöki felhasználású, hőre lágyuló műanyagok használatát, amelyek nehéz körülmények között, kemény teszteken és nagy igénybevételt jelentő alkalmazási területeken is megállják a helyüket.

Az FDM technológiával a kizárólag 3D nyomtatással előállítható geometriák gyártásához az iparból már jól ismert, nagy szilárdságú, stabil műanyagokat használhatja.

Az FDM leggyakoribb alkalmazási területei

Az FDM segítségével a vállalatok még több lehetőségre mondhatnak igent az alacsony darabszámú, egyedi gyártási alkatrészek előállítása terén.

Gyártási alkatrészek
Működőképes prototípusok

További információ az FDM technológia alkalmazási területeiről >>>

A mérnöki felhasználású, hőre lágyuló műanyagok és az FDM

Számos iparág-specifikus hőre lágyuló műanyag közül választhat, ha speciális tulajdonságok elérése a cél. A nehézgépiparban és a közlekedési ágazatban a PC-ABS-t használják kiváló szilárdsága miatt, a repülőgépipari mérnökök pedig az ULTEM™ 9085 és az ULTEM™ 1010 resineket részesítik előnyben az FST-minősítésük és az FAA 25.853-as számú szabványának való megfelelőségük miatt.

Egyes anyagok biokompatibilitásuknak és MRI-készülékekben való használhatóságuknak köszönhetően egészségügyi alkalmazásokra is ideálisak.


Elérhető alapanyagok

Alkatrészek 3D nyomtatása ABS, ULTEM™ 9085 resin, ULTEM™ 1010 resin, polikarbonát, polyamid és más anyagokkal. Kérjen árajánlatot vagy kollégáink segítségét, ha további kérdései vannak az alkatrész FDM technológiával történő gyártásával kapcsolatban.



FDM technológia a 3D nyomtatás úttörőitől

Az FDM technológiát feltaláló család tagjának lenni azt jelenti, hogy a Stratasys kutatás-fejlesztés iránti erős elkötelezettsége támogat minket. A Stratasys csapata folyamatosan kutatja az új alkalmazási területeket és lehetőségeket.

A VARINEX Zrt. több évtizedes 3D nyomtatási tapasztalattal rendelkezik, és tudja, hogyan használható az FDM technológia az adott alkalmazási területen. Projektindítás előtt lépjen kapcsolatba szakértő mérnök kollégánkkal.

Kérdése van az FDM technológiával kapcsolatban? Szívesen válaszolunk.

VARINEX Zrt. 3D nyomtatás üzletág feliratkozás hírlevélre


Témához kapcsolódó korábbi cikkeink:

Ismerje meg a STRATASYS mérnöki FDM alapanyagait: Polikarbonát, PC-ABS, Nylon >>>

Ismerje meg a STRATASYS sztenderd FDM alapanyagait: ABS, ASA és PLA >>>

Jobb végeredmény elasztomer 3D nyomtatással >>>

Stratasys mérnöki FDM alapanyagok

Ismerje meg a Stratasys mérnöki FDM alapanyagait: Polikarbonát, PC-ABS, Nylon

Ha Stratasys FDM (Fused Deposition Modeling) 3D nyomtatót használ, az alapanyaglehetőségek végtelennek tűnhetnek, de fontos, hogy megbizonyosodjon arról, hogy az Önnek legjobban megfelelő Stratasys alapanyagokat használja az FDM alkalmazásokhoz. Egy előző cikkünkben röviden ismertettük az ABS, az ASA és a PLA alapanyagokat. Most az FDM mérnöki alapanyagok ismertetésén a sor: a Polikarbonát, a PC-ABS és a Nylon alapanyagokat mutatjuk be, amelyek Stratasys Fortus típusú nyomtatóval rendelkező ügyfelek számára elérhetőek a „mérnöki műanyagok” csomagban.

Mi a Polikarbonát (PC)?

A polikarbonát anyagok a folyamatosan ismétlődő karbonát monomer szerkezetükről kapták a nevüket, sokan Lexánként ismerhetik (a Lexan a SABIC védjegye). A Polikarbonát (PC) rendkívül népszerű az iparban.  Nagy szilárdság, ütésállóság és könnyű kezelhetőség jellemzi az ebből az alapanyagokból készült modelleket. A többi amorf polimerhez hasonlóan a PC alapanyag jól nyomtatható, de kontrollálni kell a zsugorodását, ebből kifolyólag nem tanácsos a nyílt munkaterű nyomtatókkal való használata, de a zárt, fűtött és ipari sztenderdek szerint kontrollált hőmérsékletszabályozással és -eloszlással rendelkező berendezésekben a nyomtatása nem jelent kihívást a felhasználóknak.

A Stratasys Polikarbonát fehér színben kapható minden Fortus rendszerhez. Nyomtatható törhető PC-támaszanyaggal (standard T16 tippekkel) vagy oldható SR-100 (T12-SR100 tippekkel) támaszanyaggal, 127-330 mikron rétegvastagsággal.

Működési szempontból a PC könnyen használható, ugyanazokkal az alaplapokkal mint az ABS és az ASA.

Fontos, hogy a PC hajlamos a termikus sokkra, így a legjobb elkerülni a forró alkatrészek hideg tisztító tartályba való helyezését vagy akár fordítva, hogy elkerüljék a repedéseket.

140° C-nál (4,5 Bar nyomásnál) a PC-nek van a legmagasabb hőstabilitása a konkurens alapanyagokkal szemben. Kivételesen erős tömörítésnél, a tömör részek terhelése deformáció nélkül, akár öt tonna/cm3is lehet. Nagy kopásállósága miatt remek lemezformázó szerszámok elkészítésére, és sok esetben jobb választás, mint a hagyományos acél szerszámok. A szerszámozás mellett a Polikarbonát remekül használható ülékek és mérősablonok, illetve vákuumszerszámok gyártására is.

3D nyomtatott polikarbonát szerszám

3D nyomtatott PC palackfúvó szerszám

Kiváló elektrosztatikus szigetelő. Ha a nyomtatott alkatrészeket érintkezésbe kell hozni élelmiszerekkel, akkor biokompatibilis változatban is elérhető fehér vagy áttetsző színben (ISO 10993 USP Class VI).

Mi a PC-ABS?

3D nyomtatott PC-ABS szerszám

3D nyomtatott PC-ABS szerszám markolat

A PC-ABS a Polikarbonát és az ABS ötvözete. 30% -kal erősebb, mint az ABS, 13% -kal magasabb a hőtűrése, ezen felül hajlékonyabb és rugalmasabb, mint a PC. A fekete PC-ABS minden Stratasys Fortus FDM géppel nyomtatható, szabványos tipekkel (T10-T20) és alaplapokkal. A PC-ABS alapanyag már elérhető a Stratasys F370-hez is. A magasabb hőtűrés miatt jó választás mérősablonokhoz, szerelő ülékekhez, vákuumszerszámokhoz is. A PC-ABS oldószerrel simítható, pórusai lezárhatók, jó választás lehet tömör, porozitásmentes alkatrészeket igénylő alkalmazásokhoz is.

Mi a Nylon?

A DuPont védjegye után a Nylon név most már a poliamid néven ismert polimerek osztályának szinonimája. Míg a legtöbb Stratasys FDM-anyag amorf polimerként van besorolva, a nylonok félkristályosak, mert a molekuláris szerkezetük képes rendezett kristályszerkezeteket kialakítani. Ezek a kristályos szerkezetek lehetővé teszik, hogy a nylon anyagok rendkívül erősek maradjanak, rendkívül vékony szálakban is; ebből kifolyólag nagyon népszerűek a textiliparban. A 3D nyomtatás során a nylonok amorf polimerekként viselkednek, de a nyomtatott alkatrészeket kristályos szerkezetekké lágyíthatjuk, drasztikusan javítva azok szilárdságát, hőállóságát és izotropiáját.

A Nylon12 fekete színben elérhető minden Stratasys Fortus FDM gépen. A szabványos tipekkel 127-330 mikronrétegben nyomtat speciális építőlemezeken, oldható SR-110 támasztóanyaggal (T12-SR100 tip). A nylonok különösen higroszkóposak (nedvességet szívnak magukba a levegőből) és szárazon kell tartani őket ahhoz, hogy jól nyomtathatók legyenek. Használatakor különösen ügyelni kell arra, hogy az alapanyagtároló kaniszter zárva legyen, és tárolásnál is fontos, hogy ne kapjanak nedvességet. A nyomtatás után az összes nylon alkatrészt legalább 4 órán át hőkezelni kell, hogy az a maximális teljesítményt nyújtsa. A nylon alkatrészek általában jól nyomtathatók, a sacrificial tower beállítással javíthatunk a jó felületi minőségen.

A Nylon nagyon erős, keményebb, de kevésbé hajlamos a fáradásos törésre, mint a PC-ABS, ráadásul jobb kémiai ellenállással is rendelkezik. A Nylon12 a legjobb választás pattanókötésekkel rendelkező funkcionális prototípusokhoz.

3D nyomtatott szénszálas Nylon-12 fúrósablon

3D nyomtatott Nylon 12-CF szénszálas fúrósablon

Az F900 esetében elérhető a fekete Nylon6, 254 és 330 mikron rétegvastagsággal. A Nylon12-hez hasonlóan a Nylon6 is rendkívül hajlékony, de 50%-kal nagyobb szilárdsággal és hőállósággal rendelkezik, mint a Nylon12, és majdnem kétszer olyan merev. Tehát, bár sok alkalmazásban a Nylon12 fejlettebb verziójának tekinthető, ez jobban megfelel szerszámok elkészítéséhez. Az olyan befogókhoz és ülékekhez, amelyeknek merevnek kell lenniük, de bírniuk kell a kemény kezelést és az esetleges elejtést, nagyszerű a Nylon6 alapanyag.

Összefoglalva, a műszaki hőre lágyuló műanyagok ideálisak, ha a szilárdság, a hőtűrés, a merevség és a tartósság követelményei alapján a szabványos ABS, ASA és PLA műanyagok már nem megfelelőek az adott alkalmazáshoz. A PC, PC-ABS és a Nylon jól illeszkedik a funkcionális prototípusokhoz és végleges alkatrészekhez.


Tudjon meg többet az FDM technológia működéséről!

Töltse le tervezési útmutatónkat, amelyből megismerheti az FDM technológiai eljárásra vonatkozó tervezési szempontokat!


A VARINEX Zrt. szolgáltatásai mögött nem csupán az iparágvezető Stratasys áll – a 25 éves 3D nyomtatási tapasztalat mellett egy fáradhatatlan mérnökcsapattal is rendelkezünk, amely bármely projektszakaszban segítséget nyújt Önnek. Kérdése van? Segítünk!
Projektindítás előtt lépjen kapcsolatba a szakértő mérnök kollégákkal a 
3dp@varinex.hu email címen!



Kérjen árajánlatot 3D nyomtatóra, szolgáltatásra vagy alapanyagra!



VARINEX Zrt. 3D nyomtatás üzletág feliratkozás hírlevélre



Stratasys standard FDM alapanyagok: ABS, ASA és PLA

Stratasys standard FDM alapanyagok: ABS, ASA és PLA

Amennyiben egy Stratasys FDM (Fused Deposition Modeling) 3D nyomtató iránt érdeklődik, esetleg már rendelkezik is eggyel, fontos számunkra, hogy a lehető legjobban ki tudja használni a benne rejlő lehetőségeket. A berendezés gyors megtérülése, az idő- és költségmegtakarítás egy-egy adott alkalmazáshoz a megfelelő anyagok kiválasztásával maximalizálható. Amennyiben ön még most ismerkedik az additív gyártás világával, akkor az anyagok kiválasztásában kérje szakértő kollégáink segítségét. Ebben a cikkben röviden ismertetjük a Stratasys FDM alapanyagokat, amellyel támpontot szeretnénk adni az alkalmazásokhoz megfelelő műanyagok kiválasztásában. Először a leginkább elterjedt, standard alapanyagokra, az ABS-re, a PLA-ra és az ASA-ra összpontosítunk.

Az FDM technológiájú 3D nyomtatók két legelterjedtebb alapanyaga az ABS és a PLA. Az ABS-volt az első az FDM technológiában használt hőre lágyuló műanyag, amikor a technológiát a Stratasys-t alapító Scott Crump 1989-ben szabadalmaztatta.

Mi a PLA?

A Poly Lactic Acid (vagy polilaktid) alapesetben áttetsző poliészter, amely természetes keményítőkből (kukorica, cukornád stb.) származik. Kemény és merev, alacsony az üvegesedési hőmérséklete (Tg) és biológiailag lebontható (komposztálható), így az élelmiszer-csomagolásban is népszerűvé vált, többek között a környezetbarát termékek között. A PLA kevésbé tágul, mint a például az ABS alapanyag, amikor felmelegítjük, ezzel a tulajdonsággal hatékonyan használható az olcsóbb kategóriába tartozó, munkatér-fűtés nélküli berendezésekben is. A PLA önmagában nagyszerű anyag, és elérhető a Stratasys F123 3D nyomtatókban is. UV fényre érzékeny, de nehezebb és merevebb, mint az ABS, és ellenáll az acetonnak.

A PLA egyedülálló tulajdonságai megnehezítették a megbízható oldható támaszanyag kialakítását. A PLA-val általában használt támaszanyag vízben oldódik, ebből fakadóan nagyon érzékeny a környezet páratartalmára és nehezen kezelhető. A Stratasys FDM 3D nyomtatókban a PLA az egyetlen alapanyag, amelynél a modellanyagot használjuk támaszanyagként is. A PLA gyengesége a modellalapú támasztószerkezetekre vonatkozik, amelyeket kézzel kell eltávolítani, és ez a folyamat negatívan befolyásolja a gyártott modell felületét, amelyek így utólagos felületkezelést igényelnek.

Mi az ABS?

Az Akrilnitril-Butadién-Sztirol egy hőre lágyuló polimer; mindenütt jelen van a fröccsöntő és hőformázó iparágakban, mint tartós, általános felhasználású alapanyag.


A polibutadién gumi monomer rugalmasságot és ütésállóságot eredményez, míg a sztirol monomer kémiai ellenállást, keménységet és az ABS-re jellemző csillogást kölcsönöz (az akrilnitril lényegében együtt tartja az összetevőket). Ezen monomerek arányainak beállításával és különböző lágyítók hozzáadásával a műanyaggyártók különféle keverékeket állíthatnak elő a speciális alkalmazásokhoz. A Stratasys által használt ABS alapanyag (ABS plusz -P430 és ABS-M30) FDM-re specializálódott kialakítású, az extruderben nem szenesedő alapanyag. Egyik változata az ISO-minősítésű keverék ABS-M30i-ként, valamint elektrosztatikus disszipatív, vagyis ESD minősítésű anyagként az ABS-ESD7 is a felhasználók rendelkezésére áll. Az elektromos vezetőképesség növelése mellett az ABS-ESD7-ben hozzáadott szén 10%-kal növeli az alkatrészek szilárdságát és a merevségét. Az ABS alapanyagok kémiai ellenállása nem kiemelkedő, oldja az aceton, így kiválóan alkalmas a modellek felületkezelésére (aceton gőzölés), de nem alkalmas kültéri használatra, mert az UV fény fakóvá és törékennyé teszi a gyártott modelleket.

ABS -ESD7 műszerház

Mi az ASA?

Az ASA (Akrilnitril-Sztirol-Akrilát) kémiailag nagyon hasonlít az ABS-hez, a gumi monomer kivételével; a polibutadiént akrilát gumi helyettesíti.
A butadién az UV fényre reagál, amely az ABS alapanyagot a napfényben törékennyé teszi, így az ASA, amely nem tartalmaz butadiént sokkal inkább ellenáll az UV-fénynek és (az adott akrilát-észtertől függően) valamivel jobb kémiai ellenállási profilt eredményez, az aceton ennél az alapanyagnál is használható felületsimításra és ragasztásra.


A legtöbb műanyaghoz hasonlóan az ABS-nek és az ASA-nak is meglehetősen magas a termikus tágulási együtthatója (CTE). Ez a megfelelő nyomtatási környezet hiányában kihívásokat jelent a 3D nyomtatásban, mivel belső feszültséget hoz létre az alkatrészek nyomtatásakor, ami elhajlást, gyenge részeket és rétegek közötti elválást is eredményezhet. A stabil nyomtathatóság, méretpontosság és az ipari, 4% alatti maximális hibaarány érdekében minden Stratasys 3D nyomtató fűtött munkateret használ. A megoldás arra épül, hogy a munkatérben elhelyezett alkatrészek a lehető legmagasabb hőmérsékleten készüljenek (olvadás vagy megszakítás nélkül), majd a nyomtatás után egyenletesen, programozottan kerüljenek lehűtésre. A fűtött munkatér és a gyári alapanyag egységes összetétele és állandó minősége biztosítja a nagyon pontos zsugorodási tényezőt. Ez az elsődleges oka, hogy a Stratasys FDM gépek nyomtatási pontossága kiváló, és a nyomtatás megismételhető egyenletes minőségben a maximális ipari elvárásoknak megfelelően.


Mivel az ABS és az ASA megbízható, különböző színekben kapható, és az alámetszett részek utómunka nélküli nyomtathatóságának érdekében oldható támaszanyagokkal nyomtatható, a prototípusgyártáshoz és kisebb sorozatgyártáshoz tökéletes választás. Az ASA kültéri használatra is megfelelő, az ABS pedig minden más, általános célú felhasználásra megoldást jelent. Nagyszerű és könnyen elérhető alapanyagopció mindkettő az általános gyártósori eszközök előállításához.

ASA visszapillantótükör burkolat

Oldható támaszanyagok

Külön alkalmazási lehetőségek állnak rendelkezésünkre a Stratasys speciális, oldható támaszanyagaihoz is. Az ebből az anyagból készült szerszámokat sacrifical (veszejtéses) szerszámoknak nevezzük. A felhasználók a modellt és a támaszanyagokat tudják használni úgy is, hogy a gyártott termék a támaszanyagból készül, az ABS / ASA pedig a tartószerkezet. Az így kapott alkatrész üvegszálas vagy szénszálas anyaggal van körbe laminálva vagy gumiba mártva, akár galvanizáljuk/fémmel bevonjuk, majd az alakadó támasztékon egyszerűen kioldjuk és megkapjuk az az alkatrészt, amelyet nem tudtunk volna egy darabban legyártani az üvegszálas vagy kompozit technológiához használt hagyományos szerszámokkal és eljárásokkal. Ugyanez a koncepció alkalmazható a homok, gipsz vagy szilikon öntésére is. Az SR-20, SR-30 és SR-35 támaszanyagok mind melegített alkáli oldatban (WaterWorks vagy EcoWorks) lúgos folyadékban oldhatók.


A prototípus- és a kis-sorozatú gyártáshoz az ABS, az ASA és a PLA kiváló és költséghatékony alapanyagok. Amikor a végfelhasználói alkatrészek, a szerszámok és a nagy teherbírású szerelvények és gyártósori befogók, mérősablonok gyártására van szükség, már egy mérnöki kategóriájú hőre lágyuló műanyag alapanyag szükséges (Polikarbonát, PC-ABS, Nylon).


Tudjon meg többet az FDM technológia működéséről!

Töltse le tervezési útmutatónkat, amelyből megismerheti az FDM technológiai eljárásra vonatkozó tervezési szempontokat!


A VARINEX Zrt. szolgáltatásai mögött nem csupán az iparágvezető Stratasys áll – a 25 éves 3D nyomtatási tapasztalat mellett egy fáradhatatlan mérnökcsapattal is rendelkezünk, amely bármely projektszakaszban segítséget nyújt Önnek. Kérdése van? Segítünk!
Projektindítás előtt lépjen kapcsolatba a szakértő mérnök kollégákkal a 
3dp@varinex.hu email címen!

Jobb végeredmény elasztomer 3D nyomtatással

Jobb végeredmény elasztomer 3D nyomtatással

A STRATASYS a nagy teljesítményű és professzionális FDM technológia előnyeinek kiaknázásához az F123 3D nyomtató sorozatnál a berendezésekhez kifejlesztett GrabCAD Print szoftvert ajánlja. A GrabCAD Print az ipar speciális elvárásainak is megfelelő és intelligensen testre szabható 3D nyomtatási megoldást biztosít a felhasználóknak.

Légterelő cső TPU 92 alapanyagból

A kihívás:

Az elasztomer anyaghasználat továbbra is növekszik világszerte, és a különböző iparágak egyre inkább elkezdtek a 3D nyomtatás felé fordulni a költségek és a piacra jutás idejének csökkentése érdekében. Mint minden technológiánál, az optimális eredmények elérése függ az elasztomer egyedi kihívásainak megértésétől, tekintettel a rugalmasságára.

A nagy, ipari nyomtatási rendszerek intenzív munkafolyamatokkal dolgoznak. A kisebb, alacsonyabb árú FDM rendszerek előnye lehet az alacsony kezdeti költség, de építési kapacitásuk korlátozza az előállítani kívánt alkatrészek méretét. Rendkívül fontos, hogy a támaszanyag ne korlátozza az alkatrészek összetettségét. Ezek az alacsonyabb árú nyomtatók a modellek anyagából építenek támaszt, aminek következtében felület minősége romlik a támasz eltávolítása során.

A megoldás: STRATASYS F123 és az oldható támaszanyag

A válasz erre a kihívásra az elasztomer 3D nyomtató rendszer, amely jó hozzáférhetőséget, nagy építési szabadságot, könnyű kezelhetőséget és oldható támaszanyagot kínál. Ez a kombináció lehetővé teszi nagyobb, komplexebb elasztomer alkatrészek gyors és költséghatékony előállítását.

Ütésálló burkolat TPU 92 alapanyagból

A STRATASYS F123 ™ sorozatú 3D nyomtatók mindezeket a képességeket kínálják az FDM ™ TPU 92A, hőre lágyuló poliuretán elasztomer műanyagból. Ezek közül a műanyagok közül azonban a legértékesebb a QSR ™ oldható támaszanyag. A QSR lehetővé teszi, hogy olyan komplex geometriákat nyomtasson, amelyek más módon kivitelezhetetlenek lennének. Az F123 sorozat bizonyítottan megbízható és valódi plug-and-play alkalmazást biztosít.

A TPU-t (Thermoplastic Polyurethane Elastomer) az olyan kiváló tulajdonságai, mint a nyújthatóság, a kiváló szilárdság és az extrém tartósság, alkalmassá teszik komplex, üreges, rugalmas prototípusok és kis sorozatban gyártható termékek 3D nyomtatására. Az oldható támaszanyagnak köszönhetően nem kell többé tervezési kompromisszumokat kötni, és a költségek is csökkennek.

Az oldható támaszanyag egy erre az eljárásra kifejlesztett tartályban válik le a kész tárgyról, ellentétben a törhető támaszanyaggal, ami kézzel távolítható el. A törhető támaszanyag eltávolítása a belső járatokkal rendelkező csövekből sok időt igényel, feltéve, hogy egyáltalán hozzáférhető. Az oldható támaszanyagokkal készült alkatrészeket azonban egyszerűen bele lehet meríteni az oldatba, amely feloldja a támaszanyagot. Ezen túlmenően az oldható támaszanyaggal elkerülhetők a törhető támasz leválasztásakor jellemző felületi sérülések és mérettartási problémák.

Az új, rugalmas és szakadásálló alapanyag széleskörű felhasználási lehetőséget kínál az iparban, mint pl. az autóipar vagy a sportszergyártás. Többek között készíthetők belőle különféle tömítések, tömlők, csövek, konzolbélések, fogantyúk, felületvédők.

Forrás: VARINEX /Gyártástrend online